Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 066206    DOI: 10.1088/1674-1056/ac4a72
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties

Yao Wang(王遥)1, Dan Xu(徐丹)1, Shan Gao(高姗)1, Qi Chen(陈启)1, Dayi Zhou(周大义)1, Xin Fan(范鑫)1, Xin-Jian Li(李欣健)1, Lijie Chang(常立杰)1, Yuewen Zhang(张跃文)2,†, Hongan Ma(马红安)1,‡, and Xiao-Peng Jia(贾晓鹏)1,2
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microeletronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  Pyrite tailings are the main cause of acid mine wastewater. We propose an idea to more effectively use pyrite, and it is modified by exploiting the reducibility of metal represented by Al under high-pressure and high-temperature (HPHT) conditions. Upon increasing the Al addition, the conductivity of pyrite is effectively improved, which is nearly 734 times higher than that of unmodified pyrite at room temperature. First-principles calculations are used to determine the influence of a high pressure on the pyrite lattice. The high pressure increases the thermal stability of pyrite, reduces pyrite to high-conductivity Fe7S8 (pyrrhotite) by Al. Through hardness and density tests the influence of Al addition on the hardness and toughness of samples is explored. Finally we discuss the possibility of using other metal-reducing agents to improve the properties of pyrite.
Keywords:  high-pressure and high-temperature (HPHT)      pyrite      thermoelectric properties      waste recycling  
Received:  22 November 2021      Revised:  03 January 2022      Accepted manuscript online:  12 January 2022
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51171070), the Project of Jilin Science and Technology Development Plan (Grant No. 20170101045JC), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0391), and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201901405).
Corresponding Authors:  Yuewen Zhang, Hongan Ma     E-mail:  zhangyw@zzu.edu.cn;maha@jlu.edu.cn

Cite this article: 

Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏) Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties 2022 Chin. Phys. B 31 066206

[1] Farnoosh A, Lantz F and Percebois J 2014 Energy 69 299
[2] Bel L E 2008 Science 321 1457
[3] Shi X L, Zou J and Chen Z G 2020 Chem. Rev. 120 7399
[4] Chen Q, Li X, Wang Y, Chang L, Wang J, Zhang Y, Ma H and Jia X 2021 Chin. Phys. B 30 016202
[5] Ji W, Shi X L, Liu W D, Yuan H, Zheng K, Wan B, Shen W, Zhang Z, Fang C, Wang Q, Chen L, Zhang Y, Jia X and Chen Z G 2021 Nano Energy 87 106171
[6] Zhang Y, Jia X, Sun H, Sun B, Liu B, Liu H, Kong L and Ma H 2016 RSC Adv. 6 7378
[7] Su T, Zhu P, Ma H, Ren G, Chen L, Guo W, Iami Y and Jia X 2006 Solid State Commun. 138 580
[8] Zhang Y, Ma H, Sun B, Liu B, Liu H, Kong L, Liu B, Jia X and Chen X 2017 J. Alloys Compd. 715 344
[9] Deng L, Jia X P, Su T C, Jiang Y P, Zheng S Z, Guo X and Ma H A 2011 Mater. Lett. 65 1582
[10] Liu B W, Ma H G, Huo D X, Liu H Q, Liu B M, Chen J X and Jia X P 2018 J. Materiom. 4 68
[11] Beekman M, Morelli D T and Nolas G S 2016 Nat. Mater 15 11
[12] Zuniga-Puelles E, Cardoso-Gil R, Bobnar M, Veremchuk I, Himcinschi C, Hennig C, Kortus J, Heidee G and Gumeniuk R 2019 Dalton Trans. 48 10703
[13] Luo M, Zhou L, Kuang C, Wang C and Zhang H 2021 Fuel 285 119213
[14] Forson P, Skinner W and Asamoah R 2021 Powder Technol. 385 12
[15] Rieder M, Crelling J C, Sustai O, Drabek M, Weiss Z and Klementova M 2007 Int. J. Coal Geol. 71 115
[16] Fortes J C, Sarmiento A M, Luis A T, Santisteban M, Davila J M, Cordoba F and Grande J A 2021 Water Air Soil Pollut. 232 88
[17] Garcia-Carmona M, Garcia-Robles H, Torrano C T, Ondono E F, Moreno J L, Aragon M S and Peinado F J M 2019 Sci. Total Environ. 650 933
[18] Grande J A, Santisteban M, Perez-Ostale E, Valente T, de la Torre M L, Gomes P and Barrios-Parra F 2018 Mine Water Environ. 37 211
[19] Grande J A, Santisteban M, de la Torre M L, Valente T and Perez-Ostale E 2013 Mine Water Environ. 32 321
[20] Morales-Gallardo M V, Ayala A M, Pal M, Cortes Jacome M A, Toledo Antonio J A and Mathews N R 2016 Chem. Phys. Lett. 660 93
[21] Yuan B, Luan W and Tu S T 2015 Mater. Lett. 142 160
[22] Zou J, Zhao J, Wang B, Chen S, Chen P, Ran Q, Li L, Wang X, Yao J, Li H, Huang J, Niu X and Wang L 2020 ACS Appl. Mater. Interfaces 12 44850
[23] Venkateshalu S, Kumar P G, Kollu P, Jeong S K and Gracea A N 2018 Electrochim. Acta 290 378
[24] Faber M S, Lukowski M A, Ding Q, Kaiser N S and Jin S 2014 J. Phys. Chem. C 118 21347
[25] Wang F M, Li Y C, Shifa T A, Liu K L, Wang F, Wang Z X, Xu P, Wang Q S and He J 2016 Angew. Chem.-Int. Ed. 55 6919
[26] Gao M R, Zheng Y R, Jiang J and Yu S H 2017 Account. Chem. Res. 50 2194
[27] Pandey P, Gahlawat S and Ingole P P 2020 ACS Sustain. Chem. Eng. 8 15584
[28] Clamagirand J M, Ares J R, Flores E, Diaz-Chao P, Leardini F, Ferrer I J and Sanchez C 2016 Thin Solid Films 600 19
[29] Gudelli V K, Kanchana V, Vaitheeswaran G, Valsakumar M C and Mahanti S D 2014 RSC Adv. 4 9424
[30] Wang C, Niu Y, Jiang J, Chen Y D, Tian H Q, Zhang R, Zhou T, Xia J F, Pan Y and Wang S Y 2018 Nano Energy 45 432
[31] Worm H U, Clark D and Dekkers M J 1993 Geophys. J. Int. 114 127
[32] Li Y D, Cheng Y S, Su M J, Ran Q F, Wang C X, Ma H A, Fang C and Chen L C 2019 Chin. Phys. B 29 078101
[33] Fang S, Ma H A, Guo L S, ChenL C, Wang Y, Ding L Y, Cai Z H, Wang J and Jia X P 2019 Chin. Phys. B 28 098101
[34] Lu Z Y and Li J 2015 Am. Miner 100 1892
[35] Gudelli V K, Kanchana V, Appalakondaiah S, Vaitheeswaran G and Valsakumar M C 2013 J. Phys. Chem. C 117 21120
[36] Labus M 2021 Fuel 287 119529
[37] Natalia Chubar, Vasyl Gerda, Malgorzata Szlachta, Ganna Yablokova 2021 Solid State Sci. 121 106752
[38] Idczak K and Idczak R 2020 Metall. Mater. Trans. Part A 51 3076
[39] Yamashita T and Hayes P 2007 Appl. Surf. Sci. 254 2441
[40] Li X J, Chang L J, Chen Q, Wang Y, Wang C X, Wang J, Zhang Y W, Ma H A and Jia X P 2021 Ceram. Int. 47 17627
[41] Ji G Y, Chang L J, Ma H A, Liu B M, Chen Q, Wang Y, Li X J, Wang J N, Zhang Y W and Jia X P 2021 J. Alloys Compd. 850 156623
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[3] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[4] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[5] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[6] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[7] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[8] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[9] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[10] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[11] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[12] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[13] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
[14] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
[15] Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping
Hao Wang(王浩), Jin Chen(陈进), Tianqi Lu(陆天奇), Kunjie Zhu(朱坤杰), Shan Li(李珊), Jun Liu(刘军), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2018, 27(4): 047212.
No Suggested Reading articles found!