CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties |
Yao Wang(王遥)1, Dan Xu(徐丹)1, Shan Gao(高姗)1, Qi Chen(陈启)1, Dayi Zhou(周大义)1, Xin Fan(范鑫)1, Xin-Jian Li(李欣健)1, Lijie Chang(常立杰)1, Yuewen Zhang(张跃文)2,†, Hongan Ma(马红安)1,‡, and Xiao-Peng Jia(贾晓鹏)1,2 |
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microeletronics, Zhengzhou University, Zhengzhou 450052, China |
|
|
Abstract Pyrite tailings are the main cause of acid mine wastewater. We propose an idea to more effectively use pyrite, and it is modified by exploiting the reducibility of metal represented by Al under high-pressure and high-temperature (HPHT) conditions. Upon increasing the Al addition, the conductivity of pyrite is effectively improved, which is nearly 734 times higher than that of unmodified pyrite at room temperature. First-principles calculations are used to determine the influence of a high pressure on the pyrite lattice. The high pressure increases the thermal stability of pyrite, reduces pyrite to high-conductivity Fe7S8 (pyrrhotite) by Al. Through hardness and density tests the influence of Al addition on the hardness and toughness of samples is explored. Finally we discuss the possibility of using other metal-reducing agents to improve the properties of pyrite.
|
Received: 22 November 2021
Revised: 03 January 2022
Accepted manuscript online: 12 January 2022
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51171070), the Project of Jilin Science and Technology Development Plan (Grant No. 20170101045JC), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0391), and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201901405). |
Corresponding Authors:
Yuewen Zhang, Hongan Ma
E-mail: zhangyw@zzu.edu.cn;maha@jlu.edu.cn
|
Cite this article:
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏) Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties 2022 Chin. Phys. B 31 066206
|
[1] Farnoosh A, Lantz F and Percebois J 2014 Energy 69 299 [2] Bel L E 2008 Science 321 1457 [3] Shi X L, Zou J and Chen Z G 2020 Chem. Rev. 120 7399 [4] Chen Q, Li X, Wang Y, Chang L, Wang J, Zhang Y, Ma H and Jia X 2021 Chin. Phys. B 30 016202 [5] Ji W, Shi X L, Liu W D, Yuan H, Zheng K, Wan B, Shen W, Zhang Z, Fang C, Wang Q, Chen L, Zhang Y, Jia X and Chen Z G 2021 Nano Energy 87 106171 [6] Zhang Y, Jia X, Sun H, Sun B, Liu B, Liu H, Kong L and Ma H 2016 RSC Adv. 6 7378 [7] Su T, Zhu P, Ma H, Ren G, Chen L, Guo W, Iami Y and Jia X 2006 Solid State Commun. 138 580 [8] Zhang Y, Ma H, Sun B, Liu B, Liu H, Kong L, Liu B, Jia X and Chen X 2017 J. Alloys Compd. 715 344 [9] Deng L, Jia X P, Su T C, Jiang Y P, Zheng S Z, Guo X and Ma H A 2011 Mater. Lett. 65 1582 [10] Liu B W, Ma H G, Huo D X, Liu H Q, Liu B M, Chen J X and Jia X P 2018 J. Materiom. 4 68 [11] Beekman M, Morelli D T and Nolas G S 2016 Nat. Mater 15 11 [12] Zuniga-Puelles E, Cardoso-Gil R, Bobnar M, Veremchuk I, Himcinschi C, Hennig C, Kortus J, Heidee G and Gumeniuk R 2019 Dalton Trans. 48 10703 [13] Luo M, Zhou L, Kuang C, Wang C and Zhang H 2021 Fuel 285 119213 [14] Forson P, Skinner W and Asamoah R 2021 Powder Technol. 385 12 [15] Rieder M, Crelling J C, Sustai O, Drabek M, Weiss Z and Klementova M 2007 Int. J. Coal Geol. 71 115 [16] Fortes J C, Sarmiento A M, Luis A T, Santisteban M, Davila J M, Cordoba F and Grande J A 2021 Water Air Soil Pollut. 232 88 [17] Garcia-Carmona M, Garcia-Robles H, Torrano C T, Ondono E F, Moreno J L, Aragon M S and Peinado F J M 2019 Sci. Total Environ. 650 933 [18] Grande J A, Santisteban M, Perez-Ostale E, Valente T, de la Torre M L, Gomes P and Barrios-Parra F 2018 Mine Water Environ. 37 211 [19] Grande J A, Santisteban M, de la Torre M L, Valente T and Perez-Ostale E 2013 Mine Water Environ. 32 321 [20] Morales-Gallardo M V, Ayala A M, Pal M, Cortes Jacome M A, Toledo Antonio J A and Mathews N R 2016 Chem. Phys. Lett. 660 93 [21] Yuan B, Luan W and Tu S T 2015 Mater. Lett. 142 160 [22] Zou J, Zhao J, Wang B, Chen S, Chen P, Ran Q, Li L, Wang X, Yao J, Li H, Huang J, Niu X and Wang L 2020 ACS Appl. Mater. Interfaces 12 44850 [23] Venkateshalu S, Kumar P G, Kollu P, Jeong S K and Gracea A N 2018 Electrochim. Acta 290 378 [24] Faber M S, Lukowski M A, Ding Q, Kaiser N S and Jin S 2014 J. Phys. Chem. C 118 21347 [25] Wang F M, Li Y C, Shifa T A, Liu K L, Wang F, Wang Z X, Xu P, Wang Q S and He J 2016 Angew. Chem.-Int. Ed. 55 6919 [26] Gao M R, Zheng Y R, Jiang J and Yu S H 2017 Account. Chem. Res. 50 2194 [27] Pandey P, Gahlawat S and Ingole P P 2020 ACS Sustain. Chem. Eng. 8 15584 [28] Clamagirand J M, Ares J R, Flores E, Diaz-Chao P, Leardini F, Ferrer I J and Sanchez C 2016 Thin Solid Films 600 19 [29] Gudelli V K, Kanchana V, Vaitheeswaran G, Valsakumar M C and Mahanti S D 2014 RSC Adv. 4 9424 [30] Wang C, Niu Y, Jiang J, Chen Y D, Tian H Q, Zhang R, Zhou T, Xia J F, Pan Y and Wang S Y 2018 Nano Energy 45 432 [31] Worm H U, Clark D and Dekkers M J 1993 Geophys. J. Int. 114 127 [32] Li Y D, Cheng Y S, Su M J, Ran Q F, Wang C X, Ma H A, Fang C and Chen L C 2019 Chin. Phys. B 29 078101 [33] Fang S, Ma H A, Guo L S, ChenL C, Wang Y, Ding L Y, Cai Z H, Wang J and Jia X P 2019 Chin. Phys. B 28 098101 [34] Lu Z Y and Li J 2015 Am. Miner 100 1892 [35] Gudelli V K, Kanchana V, Appalakondaiah S, Vaitheeswaran G and Valsakumar M C 2013 J. Phys. Chem. C 117 21120 [36] Labus M 2021 Fuel 287 119529 [37] Natalia Chubar, Vasyl Gerda, Malgorzata Szlachta, Ganna Yablokova 2021 Solid State Sci. 121 106752 [38] Idczak K and Idczak R 2020 Metall. Mater. Trans. Part A 51 3076 [39] Yamashita T and Hayes P 2007 Appl. Surf. Sci. 254 2441 [40] Li X J, Chang L J, Chen Q, Wang Y, Wang C X, Wang J, Zhang Y W, Ma H A and Jia X P 2021 Ceram. Int. 47 17627 [41] Ji G Y, Chang L J, Ma H A, Liu B M, Chen Q, Wang Y, Li X J, Wang J N, Zhang Y W and Jia X P 2021 J. Alloys Compd. 850 156623 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|