Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境)1, Hai Yang(杨海)1,†, and Guojun Jin(金国钧)1,2,‡
1 School of Physics Science and Technology, Kunming University, Kunming 650214, China; 2 National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract Biphenylene is a new topological material that has attracted much attention recently. By amplifying its size of unit cell, we construct a series of planar structures as homogeneous carbon allotropes in the form of polyphenylene networks. We first use the low-energy effective model to prove the topological three periodicity for these allotropes. Then, through first-principles calculations, we show that the topological phase has the Dirac point. As the size of per unit cell increases, the influence of the quaternary rings decreases, leading to a reduction in the anisotropy of the system, and the Dirac cone undergoes a transition from type II to type I. We confirm that there are two kinds of non-trivial topological phases with gapless and gapped bulk dispersion. Furthermore, we add a built-in electric field to the gapless system by doping with B and N atoms, which opens a gap for the bulk dispersion. Finally, by manipulating the built-in electric field, the dispersion relations of the edge modes will be transformed into a linear type. These findings provide a hopeful approach for designing the topological carbon-based materials with controllable properties of edge states.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074156 and 12164023) and the Yunnan Local College Applied Basic Research Projects (Grant No. 2021Y710).
Corresponding Authors:
Hai Yang, Guojun Jin
E-mail: kmyangh@263.net;gjin@nju.edu.cn
Cite this article:
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧) Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks 2023 Chin. Phys. B 32 017201
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys.82 3045 [2] Burkov A A 2016 Nat. Mater.15 1145 [3] Ying X and Kamenev A 2018 Phys. Rev. Lett.121 086810 [4] Xie L C, Wu H C, Jin L and Song Z 2021 Phys. Rev. B104 165422 [5] Fang C, Weng H M, Dai X and Fang Z 2016 Chin. Phys. B25 117106 [6] Pei C Y, Xia Y, Wu J Z, Zhao Y, Gao L L, Ying T P, Gao B, Li N N, Yang W G, Zhang D Z, Gou H Y, Chen Y L, Hosono H, Li G and Qi Y P 2020 Chin. Phys. Lett.37 066401 [7] Zhai X and Jin G 2014 Phys. Rev. B89 085430 [8] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys.82 1959 [9] Liu F and Wakabayashi K 2017 Phys. Rev. Lett.118 076803 [10] Obana D, Liu F and Wakabayashi K 2019 Phys. Rev. B100 075437 [11] Kameda T, Liu F, Dutta S and Wakabayashi K 2019 Phys. Rev. B99 075426 [12] Sheng X L, Chen C, Liu H Y, Chen Z Y, Yu Z M, Zhao Y X and Yang S A 2019 Phys. Rev. Lett.123 256402 [13] Miert G V, Ortix C and Smith C M 2017 2D Mater.4 015023 [14] Fang C, Gilbert M J and Bernevig B A 2012 Phys. Rev. B86 115112 [15] Fu L and Kane C L 2007 Phys. Rev. B76 045302 [16] Kaciulis S, Mezzi A, Calvanib P and Trucchi D M 2015 Surf. Interface Anal.46 10 [17] Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R and Su G 2012 J. Appl. Phys.112 074315 [18] Weng H M, Liang Y Y, Xu Q A, Yu R, Fang Z, Dai Xi and Kawazoe Y 2015 Phys. Rev. B92 045108 [19] Wang J T, Nie S M, Weng H M, Kawazoe Y and Chen C F 2018 Phys. Rev. Lett.120 026402 [20] Fan Q, Yan L, Tripp M W, Krejčl O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P and Gottfried J M 2021 Science372 852 [21] Liu P F, Li J, Zhang C, Tu X H, Zhang J, Zhang P, Wang B T and Singh D J 2021 Phys. Rev. B104 235422 [22] Hamada N, Sawada S I and Oshiyama A 1992 Phys. Rev. Lett.68 1579 [23] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett.97 216803 [24] Cao T, Zhao F and Louie S G 2017 Phys. Rev. Lett.119 076401 [25] Hu C and Guo H 2020 Appl. Phys. Lett.117 083101 [26] Gröning O, Wang S, Yao X, Pignedoli C A, Barin G B, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P and Fasel R 2018 Nature560 209 [27] Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie S G, Crommie M F and Fischer F R 2018 Nature560 204 [28] Chen X W, Shi Z G, Xiang S H, Song K H and Zhou G H 2017 J. Phys. Condens. Matter29 085301 [29] Zhou Y C, Zhang H L and Deng W Q 2013 Nanotechnology24 225705 [30] Zhang H H, Xie Y E, Zhong C Y, Zhang Z W and Chen Y P 2017 J. Phys. Chem. C121 12476 [31] Shang L, Liu P F, Gao H, Wu W, Wang Y, Gao Z B, Wang B T and Ren W 2021 Phys. Status Solidi RRL16 2100203 [32] Yan P, Ouyang T, He C, Li J, Zhang C, Tang C and Zhong J X 2021 Nanoscale13 3564 [33] Freitas R R Q, Rivelino R, de Brito Mota F and de Castilho C M C 2015 J. Phys. Chem. C119 23599 [34] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B65 165401 [35] QuantumATK version Q-2018.6, Synopsys QuantumATK, http://www. quantum wise.com [36] Liu M Z, Liu M X, She L M, Zha Z Q, Pan J L, Li S C, Li T, He Y Y, Cai Z Y, Wang J B, Zheng Y, Qiu X H and Zhong D Y 2017 Nat. Commun.8 14924 [37] Kong W X, Wang R, Xiao X L, Zhan F Y, Gan L Y, Wei J, Fan J and Wu X Z 2021 J. Phys. Chem. Lett.12 10874 [38] Xie Y E, Kang Y, Li S, Yan X H and Chen Y P 2021 Appl. Phys. Lett.118 193101 [39] Wu X, Feng Y, Li S, Zhang B and Gao G 2020 J. Phys. Chem. C124 16127 [40] Lu S, Shi Y, Zhou W, Zhang Z, Wu F and Zhang B 2022 J. Am. Chem. Soc.144 3250 [41] Slawińska J, Zasada I and Klusek Z 2010 Phys. Rev. B81 155433 [42] Roman-Taboada P and Naumis G G 2017 Phys. Rev. B96 155435
Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5 Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.