Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097201    DOI: 10.1088/1674-1056/ac6dae
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots

Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华)
Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  We theoretically study thermoelectric transport properties through a triangular triple-quantum-dot (TTQD) structure in the linear response regime using the hierarchical equations of motion approach. It is demonstrated that large Seebeck coefficient can be obtained when properly matching the interdot tunneling strength and magnetic flux at the electron-hole symmetry point, as a result of spin chiral interactions in the TTQD system. We present a systematic investigation of the thermopower (the Seebeck coefficient) dependence on the tunneling strength, magnetic flux, and on-site energy. The Seebeck coefficient shows a clear breakdown of electron-hole symmetry in the vicinity of the Kondo regime, accompanied by the deviation from the semiclassical Mott relation in the Kondo and mixed-valence regimes, which result from the many-body effects of the Kondo correlated induced resonance together with spin chiral interactions.
Keywords:  quantum dots      Seebeck coefficient      thermoelectric transport  
Received:  04 March 2022      Revised:  22 April 2022      Accepted manuscript online:  07 May 2022
PACS:  73.21.La (Quantum dots)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774418, 11374363, and 21373191).
Corresponding Authors:  Jian-Hua Wei     E-mail:  wjh@ruc.edu.cn

Cite this article: 

Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华) Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots 2022 Chin. Phys. B 31 097201

[1] Franz R and Wiedemann D 1853 Ann. Phys. 165 497
[2] Ashcroft N W and Mermin N D 1976 Solid State Physics (Stanford:Cengage Learning)
[3] Turek M and Matveev K A 2002 Phys. Rev. B 65 115332
[4] Kubala B, König J and Pekola J 2008 Phys. Rev. Lett. 100 066801
[5] Vavilov M G and Stone A D 2005 Phys. Rev. B 72 205107
[6] Murphy P, Mukerjee S and Moore J 2008 Phys. Rev. B 78 161406(R)
[7] Wierzbicki M and Świrkowicz R 2010 Phys. Rev. B 82 165334
[8] Liu J, Sun Q F and Xie X C 2010 Phys. Rev. B 81 245323
[9] Nguyen T K T, Kiselev M N and Kravtsov V E 2010 Phys. Rev. B 82 113306
[10] Gong W J, Wang H M, Han Y and Zhang S J 2010 Curr. Appl. Phys. 82 113306
[11] Scheibner R, Buhmann H, Reuter D, Kiselev M N and Molenkamp L W 2005 Phys. Rev. Lett. 95 176602
[12] Ye L Z, Hou D, Wang R L, Cao D W, Zheng X and Yan Y J 2014 Phys. Rev. B 90 165116
[13] Wang Q, Xie H Q, Nie Y H and Ren W 2013 Phys. Rev. B 87 075102
[14] Blanter Y M, Bruder C, Fazio R and Schoeller H 1997 Phys. Rev. B 55 4069
[15] Kim T S and Hershfield S 2002 Phys. Rev. Lett. 88 136601
[16] Staring A A M, Molenkamp L W, Alphenaar B W, Van Houten H, Buyk O J A, Mabesoone M A A, Beenakker C W J and Foxon C T 1993Europhys. Lett. 22 57
[17] Scheibner R, Novik E G, Borzenko T, König M, Reuter D, Wieck A D, Buhmann H and Molenkamp L W 2007 Phys. Rev. B 75 041301(R)
[18] Ziman J M 1960 Electrons and Phonons (New York:Oxford University Press)
[19] Cutler M and Mott N F 1969 Phys. Rev. 181 1336
[20] Costi T A and Zlatić V 2010 Phys. Rev. B 81 235127
[21] Cheng Y X, Li Z H, Wei J H, Luo H G, Lin H Q and Yan Y J 2020 Sci. China Phys. Mech. Astron. 63 297811
[22] Gaudreau L, Studenikin S A, Sachrajda A S, Zawadzki P, Kam A, Lapointe J, Korkusinski M and Hawrylak P 2006 Phys. Rev. Lett. 97 036807
[23] Mitchell A K, Jarrold T F, Galpin M R and Logan D E 2013 J. Phys. Chem. B 117 12777
[24] Hsieh C Y, Shim Y P, Korkusinski M and Hawrylak P 2012 Rep. Prog. Phys. 75 114501
[25] Cheng Y X, Wang Y D, Wei J H, Zhu Z G and Yan Y J 2017 Phys. Rev. B 95 155417
[26] Weymann I, BumŁka B R and Barnaś J 2011 Phys. Rev. B 83 195302
[27] Niklas M, Trottmann A, Donarini A and Grifoni M 2017 Phys. Rev. B 95 115133
[28] Chen C C, Kuo D M T and Chang Y C 2015 Phys. Chem. Chem. Phys. 17 19386
[29] Sun L L, Chi F, Fu Z G, Yu S C, Liu L M and Chen H W 2019 J. Low. Temp. Phys. 194 235
[30] Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science 291 2573
[31] Scarola V W, Park K and Das Sarma S 2004 Phys. Rev. Lett. 93 120503
[32] Hsieh C Y, Rene A and Hawrylak P 2012 Phys. Rev. B 86 115312
[33] Wang Y D, Zhu Z G, Wei J H and Yan Y J 2020 Europhy. Lett. 130 17003
[34] Scarola V W and Das Sarma S 2005 Phys. Rev. A 71 032340
[35] Wen X G, Wilczek F and Zee A 1989 Phys. Rev. B 39 11413
[36] Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J and Yan Y J 2012 Phys. Rev. Lett. 109 266403
[37] Ye L Z, Wang X L, Hou D, Xu R X, Zheng X and Yan Y J 2016 WIREs Comput. Mol. Sci. 6 608
[38] Feynman R P and Vernon F L 2000 Ann. Phys. 281 547
[39] Jin J S, Zheng X and Yan Y J 2008 J. Chem. Phys. 128 234703
[40] Yan Y J 2014 J. Chem. Phys. 140 054105
[41] Yan Y J, Jin J S, Xu R X and Zheng X 2016 Front. Phys. 11 110306
[42] Wang Y D, Ni J H and Wei J H 2017 Phys. Rev. B 96 245426
[43] Cheng Y X, Wang Y D, Wei J H, Zhu Z G and Yan Y J 2017 Phys. Rev. B 95 155417
[44] Li Z H, Cheng Y X, Wei J H, Zheng X and Yan Y J 2018 Phys. Rev. B 98 115133
[45] Liu Y M, Wang Y D and Wei J H 2022 Chin. Phys. B 31 057201
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[8] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[9] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[10] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[11] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[12] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[13] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[14] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[15] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
No Suggested Reading articles found!