CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics |
Yiyuan Chen(陈艺源)1,†, Qing Shi(石青)1,†, Yan Zhong(钟艳)1, Ruiheng Li(李瑞恒)1, Liwei Lin(林黎蔚)1, Ding Ren(任丁)1,‡, Bo Liu(刘波)1, and Ran Ang(昂然)1,2,§ |
1 Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; 2 Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China |
|
|
Abstract Tetradymite-structured chalcogenides, such as Bi$_{2}$Te$_{3}$ and Sb$_{2}$Te$_{3}$, are quasi-two-dimensional (2D) layered compounds, which are significant thermoelectric materials applied near room temperature. The intercalation of guest species in van der Waals (vdW) gap implemented for tunning properties has attracted much attention in recent years. We attempt to insert Ga atoms in the vdW gap between the Te layers in p-type Bi$_{0.3}$Sb$_{1.7}$Te$_{3}$ (BST) for further improving thermoelectrics. The vdW-related defects (including extrinsic interstitial and intrinsic defects) induced by Ga intercalation can not only modulate the carrier concentration but also enhance the texture, thereby yielding excellent electrical properties, which are reflected in the power factor ${PF} \sim 4.43 $ mW$\cdot$m$^{-1}\cdot$K$^{-2}$. Furthermore, the intercalation of Ga produces multi-scale lattice imperfections such as point defects, Te precipitations, and nanopores, realizing the low lattice thermal conductivity in BST-Ga samples. Ultimately, a peak ${zT} \sim 1.1$ at 373 K is achieved in the BST-1% Ga sample and greatly improved by $\sim 22%$ compared to the pristine BST. The weak bonding of vdW interlayer interaction can boost the synergistic effect for advancing BST-based or other layered thermoelectrics.
|
Received: 03 December 2022
Revised: 12 February 2023
Accepted manuscript online: 09 March 2023
|
PACS:
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
74.25.fg
|
(Thermoelectric effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFB3803900 and 2018YFA0702100), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility (Grant No. U1932106), and the Sichuan University Innovation Research Program of China (Grant No. 2020SCUNL112). |
Corresponding Authors:
Ding Ren, Ran Ang
E-mail: rending2k@scu.edu.cn;rang@scu.edu.cn
|
Cite this article:
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然) Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics 2023 Chin. Phys. B 32 067201
|
[1] Li J F, Liu W S, Zhao L D and Zhou M2010 NPG Asia Mater. 2 152 [2] Mao J, Zhu H T, Ding Z W, Liu Z H, Gamage G A, Chen G and Ren Z F2019 Science 365 495 [3] Ioffe A F, Stil'bans L S, Iordanishvili E K, Stavitskaya T S, Gelbtuch A and Vineyard G1959 Phys. Today 12 42 [4] Pei Y, Heinz N A and Snyder G J2011 J. Mater. Chem. 21 18256 [5] Chen L D, Zhang Q, Guo Z, Yan Z P, Song K, Wu G, Wang X M, Tan X J, Hu H Y, Sun P, Liu G Q and Jiang J2021 Mater. Today Phys. 21 100544 [6] Bilc D, Mahanti S D, Quarez E, Hsu K F, Pcionek R and Kanatzidis M G2004 Phys. Rev. Lett. 93 146403 [7] Heremans J P, Wiendlocha B and Chamoire A M2012 Energy Environ. Sci. 5 5510 [8] Cheng T C, Cheng C H, Huang Z Z and Liao G C2011 Energy 36 133 [9] Hsiao Y Y, Chang W C and Chen S L2010 Energy 35 1447 [10] Hsu C T, Huang G Y, Chu H S, Yu B and Yao D J2011 Appl. Energy 88 1291 [11] Fu L W, Lee K H, Kim S I, Lim J H, Choi W, Cheng Y D, Oh M W, Kim Y M and Kim S W2021 Acta Mater. 215 117058 [12] Li F, Ruan M, Jabar B, Liang C B, Chen Y X, Ao D W, Zheng Z H, Fan P and Liu W S2021 Nano Energy 88 106273 [13] Zhuang H L, Hu H H, Pei J, Su B, Li J W, Jiang Y L, Han Z R and Li J F2022 Energy Environ. Sci. 15 2039 [14] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder G J2012 Nat. Mater. 11 422 [15] He Y, Day T, Zhang T, Liu H, Shi X, Chen L and Snyder G J2014 Adv. Mater. 26 3974 [16] Zhong B, Zhang Y, Li W, Chen Z, Cui J, Li W, Xie Y, Hao Q and He Q2014 Appl. Phys. Lett. 105 123902 [17] Tao Q R, Meng F C, Zhang Z K, Cao Y, Tang Y F, Zhao J G, Su X L, Uher C and Tang X F2021 Mater. Today Phys. 20 100472 [18] Zhu B, Wang W, Cui J and He J Q2021 Small 17 2101328 [19] Liang H, Lou Q, Zhu Y K, Guo J, Wang Z Y, Gu S W, Yu W, Feng J, He J and Ge Z H2021 ACS Appl. Mater. Interfaces 13 45589 [20] Fu L, Kane C L and Mele E J2007 Phys. Rev. Lett. 98 106803 [21] Goldsmid H J 1961 J. Appl. Phys. 32 2198 [22] Cheng Y D, Cojocaru M O, Keutgen J, Yu Y, Kupers M, Schumacher M, Golub P, Raty J Y, Dronskowski R and Wuttig M2019 Adv. Mater. 31 1904316 [23] Medlin D L, Yang N, Spataru C D, Hale L M and Mishin Y2019 Nat. Commun. 10 1820 [24] Callaert C, Bercx M, Lamoen D and Hadermann J2019 Acta Crystallogr. B 75 717 [25] Zhang X W, Guo Y, Zhou Z B, Li Y H, Chen Y F and Wang J L2021 Energy Environ. Sci. 14 4059 [26] Qi X, Yu Y, Xu X, Wang J C, Zhang F D, Zhu B, He J Q, Chao X L, Yang Z P and Wu D2021 Mater. Today Phys. 21 100507 [27] Wu D, Xie L, Xu X and He J Q2019 Adv. Funct. Mater. 29 1806613 [28] Lu W C, Cui W J, Zhao W, Lin W X, Liu C S, Van Tendeloo G, Sang X H, Zhao W Y and Zhang Q J2022 Adv. Mater. Interfaces 9 2102161 [29] Bludská J, Jakubec I, Drašar Č, Lošták P and Horák J2007 Philos. Mag. 87 325 [30] Bludská J, Karamazov S, Navrátil J, Jakubec I and Horák J2004 Solid State Ionics 171 251 [31] Chen X, Li J, Shi Q, Chen Y, Gong H, Huang Y, Lin L, Ren D, Liu B and Ang R2021 ACS Appl. Mater. Interfaces 13 58781 [32] Liu W S, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang D, Chen G and Ren Z2011 Adv. Energy Mater. 1 577 [33] Sun G, Qin X, Li D, Zhang J, Ren B, Zou T, Xin H, Paschen S B and Yan X2015 J. Alloys Compd. 639 9 [34] Chen C L, Wang T H, Yu Z G, Hutabalian Y, Vankayala R K, Chen C C, Hsieh W P, Jeng H T, Wei D H and Chen Y Y2022 Adv. Sci. 9 2201353 [35] Bludska J, Jakubec I, Karamazov S, Horak J and Uher C2010 J. Solid State Chem. 183 2813 [36] Svechnikova T E, Konstantinov P P and Alekseeva G T2000 Inorg. Mater. 36 556 [37] Wang Z L, Yokoyama Y, Onda T, Adachi Y and Chen Z C2019 Adv. Electron. Mater. 5 1900079 [38] Hasan S W, Mun H, Kim S I, Cho J Y, Roh J W, Yang S, Choi S M, Lee K H and Kim S W2013 J. Nanomater. 2013 905389 [39] Zhang Z, Sharma P A, Lavernia E J and Yang N2011 J. Mater. Res. 26 475 [40] Ivanov O and Yaprintsev M2018 Mater. Res. Express 5 015905 [41] Lim Y S, Song M, Lee S, An T H, Park C and Seo W S2016 J. Alloys Compd. 687 320 [42] Gaul A, Peng Q, Singh D J, Borca T T and Ramanath G2019 J. Appl. Phys. 125 165101 [43] Richter W and Becker C R1977 Phys. Status Solidi B 84 619 [44] Souza S M, Trichês D M, de Lima J C, Grandi T A and de Biasi R S2010 Physica B 405 2807 [45] Manjon F J, Gallego P S, Rodriguez H P, Munoz A, Drasar C, Munoz S V and Oeckler O2021 J. Mater. Chem. C 9 6277 [46] Bokova M, Tverjanovich A, Benmore C J, Fontanari D, Sokolov A, Khomenko M, Kassem M, Ozheredov I and Bychkov E2021 ACS Appl. Mater. Interfaces 13 37363 [47] Yang J, Yip H L and Jen A K Y2013 Adv. Energy Mater. 3 549 [48] Zhang Y H, Xu G Y, Han F, Wang Z and Ge C C2010 J. Electron. Mater. 39 1741 [49] Zhao K, Duan H, Raghavendra N, Qiu P, Zeng Y, Zhang W, Yang J, Shi X and Chen L2017 Adv. Mater. 29 1701148 [50] Lee K H, Choi S M, Roh J W, Hwang S, Kim S I, Shin W H, Park H J, Lee J H, Kim S W and Yang D J2015 J. Electron. Mater. 44 1531 [51] Lee K H, Hwang S, Ryu B, Ahn K, Roh J, Yang D, Lee S M, Kim H and Kim S I2013 J. Electron. Mater. 42 1617 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|