Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 127401    DOI: 10.1088/1674-1056/ae0d5a
RAPID COMMUNICATION Prev  

Crystal growth and characterization of a hole-doped iron-based superconductor Ba(Fe0.875Ti0.125)2As2

Yi-Li Sun(孙毅丽)1,2, Ze-Zhong Li(李泽众)1,2, Yang Li(李阳)1,2, Hong-Lin Zhou(周宏霖)1, Amit Pokhriyal3,4, Haranath Ghosh3,4,†, Shi-Liang Li(李世亮)1,2,‡, and Hui-Qian Luo(罗会仟)1,§
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Theory and Computational Physics Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India;
4 Homi Bhabha National Institute, BARC training school complex 2nd floor, Anushakti Nagar, Mumbai 400094, India
Abstract  We report the crystal growth of a new hole-doped iron-based superconductor Ba(Fe$_{0.875}$Ti$_{0.125}$)$_2$As$_2$ by substituting Ti on the Fe site. The crystals are accidentally obtained in trying to grow Ni doped Ba$_2$Ti$_2$Fe$_2$As$_4$O. After annealing at 500~$^\circ$C in vacuum for one week, superconductivity is observed with zero resistance at $T_{\rm c0} \approx 17.5$ K, and about 20 % diamagnetic volume down to 2 K. While both the small anisotropy of superconductivity and the temperature dependence of normal state resistivity are akin to the electron doped 122-type compounds, the Hall coefficient is positive and similar to the case in hole-doped Ba$_{0.9}$K$_{0.1}$Fe$_2$As$_2$. The density functional theory calculations suggest dominated hole pockets contributed by Fe/Ti 3d orbitals. Therefore, the Ba(Fe$_{1-x}$Ti$_{x}$)$_2$As$_2$ system provides a new platform to study the superconductivity with hole doping on the Fe site of iron-based superconductors.
Keywords:  iron-based superconductors      crystal growth      flux method      hole-doped compounds  
Received:  13 August 2025      Revised:  15 September 2025      Accepted manuscript online:  30 September 2025
PACS:  74.25.-q (Properties of superconductors)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Fy  
Fund: This work is supported by the National Key R&D Program of China (Grant Nos. 2023YFA1406100, 2022YFA1403800, 2022YFA1403400, and 2021YFA1400400), the National Natural Science Foundation of China (Grant Nos. 12274444 and 12574165), the Chinese Academy of Sciences (Grant No. XDB25000000). DFT calculations are performed at the HPC facilities at RRCAT. AP acknowledges financial support from HBNI-RRCAT.
Corresponding Authors:  Haranath Ghosh, Shi-Liang Li, Hui-Qian Luo     E-mail:  hng@rrcat.gov.in;slli@iphy.ac.cn;hqluo@iphy.ac.cn
About author:  2025-127401-251405.pdf

Cite this article: 

Yi-Li Sun(孙毅丽), Ze-Zhong Li(李泽众), Yang Li(李阳), Hong-Lin Zhou(周宏霖), Amit Pokhriyal, Haranath Ghosh, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟) Crystal growth and characterization of a hole-doped iron-based superconductor Ba(Fe0.875Ti0.125)2As2 2025 Chin. Phys. B 34 127401

[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Chen X H, Dai P C, Feng D L, Xiang T and Zhang F C 2014 Nat. Sci. Rev. 1 371
[3] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[4] Johnston D C 2010 Adv. Phys. 59 803
[5] White B D, Thompson J D and Maple M B 2015 Physica C 514 246
[6] Gu Q Q and Wen H H 2022 The Innovation 3 100202
[7] Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q,Wang N L, Uwatoko Y and Luo J L 2014 Nat. Commun. 5 5508
[8] Yang P T, Dong Q X, Shan P F, Liu Z Y, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Wang B S and Cheng J G 2022 Chin. Phys. Lett. 39 067401
[9] Wang M,Wen H H,Wu T, Yao D X and Xiang T 2024 Chin. Phys. Lett. 41 077402
[10] Luo H Q 2025 The Innovation Materials 3 100119
[11] Zeng W J, Zhang Z Y, Dong X Y, Tu Y B, Wu Y W, Wang T, Zhang F, Shao S, Hou J, Hou X Y, Hao N, Mu G and Shan L 2025 Chin. Phys. B 34 087402
[12] Mo Z Y, Li C Y, Zhang W T, Liu C, Sun Y X, Liu R X and Lu X Y 2024 Chin. Phys. Lett. 41 107102
[13] Stockert O and Steglich F 2011 Annu. Rev. Condens. Matter Phys. 2 79
[14] WuW, Zhang X D, Yin Z H, Zheng P,Wang N L and Luo J L 2010 Sci. China-Phys. Mech. Astron. 53 1207
[15] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L and Uwatoko Y 2015 Phys. Rev. Lett. 114 117001
[16] Sun H L, Huo M M, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M and Wang M 2023 Nature 621 493
[17] Li J Y, Chen C Q, Huang C X, Han Y F, Huo M W, Huang X, Ma P Y, Qiu Z Y, Chen J F, Hu X W, Chen L, Xie T, Shen B, Sun H L, Yao D X and Wang M 2024 Sci. China-Phys. Mech. Astron. 67 117403
[18] Chen Y, Zhang K, Xu M H, Zhao Y, Xiao H Y and Qiao L 2025 Sci. China-Phys. Mech. Astron. 68 247411
[19] Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K and Chen Z Y 2025 Nature 640 641
[20] Qin Q, Wang J F and Yang Y F 2024 The Innovation Materials 2 100102
[21] Tranquada J M, Xu G and Zaliznyak I A 2014 J. Magn. Magn. Mater. 350 148
[22] Zhou X J, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P and Eremets M 2021 Nat. Rev. Phys. 3 462
[23] Dai P C 2015 Rev. Mod. Phys. 87 855
[24] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[25] Wen J S, Xu G Y, Gu G D, Tranquada J M and Birgeneau R J 2011 Rep. Prog. Phys. 74 124503
[26] Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J and Kotliar G 2022 Nature 601 35
[27] Hosono H, Yamamoto A, Hiramatsu H and Ma Y W 2018 Materials Today 21 278
[28] Rotter M, Tegel M, Johrendt D, Schellenberg I, HermesWand Pöttgen R 2008 Phys. Rev. B 78 020503
[29] Krellner C, Caroca-Canales N, Jesche A, Rosner H, Ormeci A and Geibel C 2008 Phys. Rev. B 78 100504
[30] Huang Q, Qiu Y, Bao W, Lynn J W, Green M A, Chen Y, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003
[31] Gong D L, Liu Z Y, Gu Y H, Xie T, Ma X Y, Luo H Q, Yang Y F and Li S L 2017 Phys. Rev. B 96 104514
[32] Gong D L and Luo H Q 2018 Acta Phys. Sin. 67 207406 (in Chinese)
[33] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[34] Rotter M, Pangerl M, Tegel M and Johrendt D 2008 Angew. Chem. Int. Ed. 47 7949
[35] Luo H Q, Wang Z S, Yang H, Cheng P, Zhu X Y and Wen H H 2008 Supercond. Sci. Technol. 21 125014
[36] Böhmer A. E, Hardy F, Wang L, Wolf T, Schweiss P and Meingast C 2015 Nat. Commun. 6 7911
[37] Avci S, Chmaissem O, Allred J M, Rosenkranz S, Eremin I, Chubukov A V, Bugaris D E, Chung D Y, KanatzidisMG, Castellan J P, Schlueter J A, Claus H, Khalyavin D D, Manuel P, Daoud-Aladine A and Osborn R 2014 Nat. Commun. 5 3845
[38] Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[39] Li L J,Wang Q B, Luo Y K, Chen H, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H and Xu Z A 2009 New J. Phys. 11 025008
[40] Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud’ko S L, Canfield P C and Hannahs S T 2010 Phys. Rev. B 82 024519
[41] Canfield P C, Bud’ko S L, Ni N, Yan J Q and Kracher A 2009 Phys. Rev. B 80 060501
[42] Ni N, Thaler A, Kracher A, Yan J Q, Bud’ko S L and Canfield P C 2009 Phys. Rev. B 80 024511
[43] Han F, Zhu X Y, Cheng P, Mu G, Jia Y, Fang L, Wang Y, Luo H, Zeng B, Shen B, Shan L, Ren C and Wen H H 2009 Phys. Rev. B 80 024506
[44] Kirshenbaum K, Saha S R, Drye T and Paglione J 2010 Phys. Rev. B 82 144518
[45] Jiang S, Xing H, Xuan G F, Wang C, Ren Z, Feng C, Dai J H, Xu Z A and Cao G H 2009 J. Phys.: Condens. Matter 21 382203
[46] Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T and Matsuda Y 2010 Phys. Rev. B 81 184519
[47] Hu D, Lu X Y, Zhang W L, Luo H Q, Li S L, Wang P P, Chen G F, Han F, Banjara S R, Sapkota A, Kreyssig A, Goldman A I, Yamani Z, Niedermayer C, Skoulatos M, Georgii R, Keller T, Wang P S, Yu W Q and Dai P C 2015 Phys. Rev. Lett. 114 157002
[48] Shibauchi T, Carrington A and Matsuda Y 2014 Annu. Rev. Condens. Matter Phys. 5 113
[49] Luo H Q, Zhang R, Laver M, Yamani Z, Wang M, Lu X Y, Wang M Y, Chen Y C, Li S L, Chang S, Lynn J W and Dai P C 2012 Phys. Rev. Lett. 108 247002
[50] Kim M G, Lamsal J, Heitmann T W, Tucker G S, Pratt D K, Khan S N, Lee Y B, Alam A, Thaler A, Ni N, Ran S, Bud’ko S L, Marty K J, Lumsden M D, Canfield P C, Harmon B N, Johnson D D, Kreyssig A, McQueeney R J and Goldman A I 2012 Phys. Rev. Lett. 109 167003
[51] Lu X Y, Gretarsson H, Zhang R, Liu X R, Luo H Q, Tian W, Laver M, Yamani Z, Kim Y J, Nevidomskyy A H, Si Q M and Dai P C 2013 Phys. Rev. Lett. 110 257001
[52] Zhang WL, Park J T, Lu X Y,Wei Y, Ma X Y, Hao L J, Dai P C, Meng Z Y, Yang Y F, Luo H Q and Li S L 2016 Phys. Rev. Lett. 117 227003
[53] Wang L, Hardy F, Böhmer A E, Wolf T, Schweiss P and Meingast C 2016 Phys. Rev. B 93 014514
[54] Zhou H L, Zhang Y H, Li Y, Li S L, Hong W S and Luo H Q 2022 Chinese Phys. B 31 117401
[55] Hong W S, Zhou H L, Li Z Z, Li Y, Stuhr U, Pokhriyal A, Ghosh H, Tao Z, Lu X Y, Hu J P, Li S L and Luo H Q 2023 Phys. Rev. B 107 224514
[56] Cheng P, Shen B, Hu J P and Wen H H 2010 Phys. Rev. B 81 174529
[57] Cheng P, Shen B, Han F andWen H H 2013 Europhys. Lett. 104 37007
[58] Li J, Guo Y F, Zhang S B, Yuan J, Tsujimoto Y, Wang X, Sathish C I, Sun Y, Yu S, Yi W, Yamaura K, Takayama-Muromachiu E, Shirako Y, Akaogi M and Kontani H 2012 Phys. Rev. B 85 214509
[59] Wang W Y, Song Y, Hu D, Li Y, Zhang R, Harriger L W, Tian W, Cao H B and Dai P C 2017 Phys. Rev. B 96 161106
[60] Sefat A S, Singh D J, VanBebber L H, Mozharivskyj Y, McGuire M A, Jin R, Sales B C, Keppens V and Mandrus D 2009 Phys. Rev. B 79 224524
[61] Gu Y H, Wei Y, Gong D L, Zhang W L, Hong W S, Ma X Y, Li X G, Tian C K, Cheng P, Zhang H X, Bao W, Deng G C, Li X, Song J M, Yang Y F, Luo H Q and Li S L 2019 arXiv:1905.03941
[62] Takeda H, Imai T, Tachibana M, Gaudet J, Gaulin B D, Saparov B I and Sefat A S 2014 Phys. Rev. Lett. 113 117001
[63] Kim M G, Wang M, Tucker G S, Valdivia P N, Abernathy D L, Chi S, Christianson A D, Aczel A A, Hong T, Heitmann TW, Ran S, Canfield P C, Bourret-Courchesne E D, Kreyssig A, Lee D H, Goldman A I, McQueeney R J and Birgeneau R J 2015 Phys. Rev. B 92 214404
[64] Zhang R, Gong D L, Lu X Y, Li S L, Dai P C and Luo H Q 2014 Supercond. Sci. Technol. 27 115003
[65] Zhang R, Gong D L, Lu X Y, Li S L, Laver M, Niedermayer C, Danilkin S, Deng G C, Dai P C and Luo H Q 2015 Phys. Rev. B 91 094506
[66] Gong D L, Xie T, Zhang R, Birk J, Niedermayer C, Han F, Lapidus H, Dai P C, Li S L and Luo H Q 2018 Phys. Rev. B 98 014512
[67] Gong D L, Yi M, Wang M, Xie T, Zhang W L, Danilkin S, Deng G C, Liu X Z, Park J T, Ikeuchi K, Kamazawa K, Mo S K, Hashimoto M, Lu D H, Zhang R, Dai P C, Birgeneau R J, Li S L and Luo H Q 2022 Front. Phys. 10 886459
[68] Marty K, Christianson A D,Wang C H, Matsuda M, Cao H, VanBebber L H, Zarestky J L, Singh D J, Sefat A S and Lumsden M D 2011 Phys. Rev. B 83 060509
[69] Kim M G, Kreyssig A, Thaler A, Pratt D K, Tian W, Zarestky J L, Green M A, Bud’ko S L, Canfield P C, McQueeney R J and Goldman A I 2010 Phys. Rev. B 82 220503
[70] Zou Q, Fu M M, Wu Z M, Li L, Parker D S, Sefat A S and Gai Z 2021 npj Quantum Materials 6 89
[71] Thaler A, Hodovanets H, Torikachvili M S, Ran S, Kracher A, Straszheim W, Yan J Q, Mun E and Canfield P C 2011 Phys. Rev. B 84 144528
[72] Inosov D S, Friemel G, Park J T, Walters A C, Texier Y, Laplace Y, Bobroff J, Hinkov V, Sun D L, Liu Y, Khasanov R, Sedlak K, Bourges P, Sidis Y, Ivanov A, Lin C T, Keller T and Keimer B 2013 Phys. Rev. B 87 224425
[73] Tucker G S, Pratt D K, Kim M G, Ran S, Thaler A, Granroth G E, Marty K, Tian W, Zarestky J L, Lumsden M D, Bud’ko S L, Canfield P C, Kreyssig A, Goldman A I and McQueeney R J 2012 Phys. Rev. B 86 020503
[74] Cantarino M R, Pakuszewski K R, Salzmann B, Moya P H A, da Silva NetoWR, Freitas G S, Pagliuso P G, Adriano C, BritoWH and Garcia F A 2024 SciPost Phys. 17 141
[75] Li X G, Sheng J M, Tian C K, Wang Y Y, Xia T L, Wang L, Ye F, Tian W,Wang J C, Liu J J, Zhang H X, BaoWand Cheng P 2018 Europhys. Lett. 122 67006
[76] Gu Y H, Wang J Q, Ma X Y, Luo H Q, Shi Y G and Li S L 2018 Supercond. Sci. Technol. 31 125008
[77] Yan J Q, Nandi S, Saparov B, C ermak P, Xiao Y, Su Y, JinWT, Schneidewind A, Brückel Th, McCallum R W, Lograsso T A, Sales B C and Mandrus D G 2015 Phys. Rev. B 91 024501
[78] Sun Y L, Jiang H, Zhai H F, Bao J K, JiaoWH, Tao Q, Shen C Y, Zeng Y W, Xu Z A and Cao G H 2012 J. Am. Chem. Soc. 134 12893
[79] Abdel-Hafiez M, Brisbois J, Zhu Z, Adamski A, Hassen A, Vasiliev A N, Silhanek A V and Krellner C 2018 Phys. Rev. B 97 115152
[80] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L 2009 Nature 457 565
[81] Wang Z S, Xie T, Kampert E, Förster T, Lu X Y, Zhang R, Gong D L, Li S L, Herrmannsdörfer T, Wosnitza J and Luo H Q 2015 Phys. Rev. B 92 174509
[82] Sun Y L, Ablimit A, Bao J K, Jiang H, Zhou J and Cao G H 2013 Sci. Technol. Adv. Mater. 14 055008
[83] Ablimit A, Sun Y L, Jiang H, Bao J K, Zhai H F, Tang Z T, Liu Y,Wang Z C, Feng C M and Cao G H 2017 J. Alloys Compd. 694 1149
[84] Hsieh C C, Ke C, Zhou D J, Cheng C H, Zhang H and Zhao Y 2018 J. Alloys Compd. 745 460
[85] Hsieh C C, Ke C, Cheng C H, Zhang H and Zhao Y 2018 J. Supercond. Nov. Magn. 31 1701
[86] Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D and Cococcioni M et al. 2017 J. Phys.: Condens. Matter 29 465901
[87] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[88] Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877
[89] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[90] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[91] Dal Corso A 2014 Comput. Mater. Sci. 95 337
[92] Kawamura M 2019 Comput. Phys. Commun. 239 197
[93] Jiang S, Liu L, Schütt M, Hallas A M, Shen B, TianW, Emmanouilidou E, Shi A, Luke G M, Uemura Y J, Fernandes RMand Ni N 2016 Phys. Rev. B 93 174513
[94] Xie T, Gong D, Ghosh H, Ghosh A, Soda M, Masuda T, Itoh S, Bourdarot F, Regnault L P, Danilkin S, Li S L and Luo H Q 2018 Phys. Rev. Lett. 120 137001
[95] Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C and Wen H H 2011 Phys. Rev. B 84 184512
[96] Ni N, Bud’ko S L, Kreyssig A, Nandi S, Rustan G E, Goldman A I, Gupta S, Corbett J D, Kracher A and Canfield P C 2008 Phys. Rev. B 78 014507
[97] Chen Y C, Lu X Y,Wang M, Luo H Q and Li S L 2011 Supercond. Sci. Technol. 24 065004
[98] Luo H Q, Cheng P, Wang Z S, Yang H, Jia Y, Fang L, Ren C, Shan L and Wen H H 2009 Physica C 469 477
[99] Werthamer N R, Helfand E F and Hohenberg P C 1966 Phys. Rev. 147 295
[100] Jiang H, Sun Y L, Xu Z A and Cao G H 2013 Chin. Phys. B 22 087410
[101] Wu D S, Jia J J, Yang J G, HongWS, Shu Y J, Miao T M, Yan H, Rong H T, Ai P, Zhang X, Yin C H, Liu J Y, Chen H K, Yang Y H, Peng C, Li C L, Zhang S J, Zhang F F, Yang F, Wang Z M, Zong N, Liu L J, Li R K, Wang X Y, Peng Q J, Mao H Q, Liu G D, Li S L, Chen Y L, Luo H Q, Wu X X, Xu Z Y, Zhao L and Zhou X J 2024 Nat. Phys. 20 571
[102] Li Y,Wu D S, Shu Y J, Liu B, Stuhr U, Deng G C, Stampfl A P J, Zhao L, Zhou X J, Li S L, Pokhriyal A, Ghosh H, Hong W S and Luo H Q 2025 Chin. Phys. Lett. 42 067405
[103] Lafuerza S, Gretarsson H, Hardy F, Wolf T, Meingast C, Giovannetti G, Capone M, Sefat A S, Kim Y J, Glatzel P and de’Medici L 2017 Phys. Rev. B 96 045133
[104] Texier Y, Laplace Y, Mendels P, Park J T, Friemel G, Sun D L, Inosov D S, Lin C T and Bobroff J 2012 Europhys. Lett. 99 17002
[105] Suzuki H, Yoshida T, Ideta S, Shibata G, Ishigami K, Kadono T, Fujimori A, Hashimoto M, Lu D H, Shen Z X, Ono K, Sakai E, Kumigashira H, Matsuo M and Sasagawa T 2013 Phys. Rev. B 88 100501
[106] Kobayashi T, Nakajima M, Miyasaka S and Tajima S 2016 Phys. Rev. B 94 224516
[107] Cantarino M R, Pakuszewski R, Salzmann B, Moya P H A, da Silva Neto W R, Freitas G S, Pagliuso P G, Brito W H, Monney C, Adriano C and Garcia F A 2023 Phys. Rev. B 108 245124
[108] Garcia F A, Ivashko O, McNally D E, Das L, Piva M M, Adriano C, Pagliuso P G, Chang J, Schmitt T and Monney C 2019 Phys. Rev. B 99 115118
[109] Chen L, Cao C, Chen H X, Guo J G, Ma J, Hu J P and Wang G 2021 Phys. Rev. B 103 134509
[110] Cantarino M R, Teixeira R M P, Pakuszewski R, da Silva NetoWR, de Abrantes J G, Garcia-Fernandez M, Pagliuso P G, Adriano C, Monney C, Schmitt T, Andrade E C and Garcia F A 2025 arXiv:2509.00242
[1] Preparation of high-performance Cu2Se thermoelectric materials by the KCl flux method and research on thermoelectric transport performance
Yonggui Tao(陶永贵), Chisheng Deng(邓池升), Jicheng Li(李吉成), Wen Ge(葛文), Ying Zhang(张盈), Yujie Xiang(向玉婕), and Shukang Deng(邓书康). Chin. Phys. B, 2025, 34(9): 097306.
[2] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[3] Single crystal growth and electronic structure of Fe-doped Sr3Ir2O7
Muhammad Waqas, Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Jianchang Shen(沈建昌), Linwei Huai(淮琳崴), Xiupeng Sun(孙秀鹏), Yu Miao(缪宇), Pelda Uzun, Runqing Luan(栾润青), Zikun Feng(冯梓琨), Dai Pan(潘岱), Xinru Yong(勇欣茹), Hongxu Sun(孙鸿绪), Zhipeng Ou(欧志鹏), and Junfeng He(何俊峰). Chin. Phys. B, 2025, 34(10): 107101.
[4] Single crystal growth and characterization of 166-type magnetic kagome metals
Huangyu Wu(吴黄宇), Jinjin Liu(刘锦锦), Yongkai Li(李永恺), Peng Zhu(朱鹏), Liu Yang(杨柳), Fuhong Chen(陈富红), Deng Hu(胡灯), and Zhiwei Wang(王秩伟). Chin. Phys. B, 2024, 33(9): 098101.
[5] Single crystal growth and transport properties of narrow-bandgap semiconductor RhP2
De-Sheng Wu(吴德胜), Ping Zheng(郑萍), and Jian-Lin Luo(雒建林). Chin. Phys. B, 2024, 33(8): 088101.
[6] Magnetic and electrical transport properties in GdAlSi and SmAlGe
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙). Chin. Phys. B, 2024, 33(7): 077302.
[7] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[8] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
[9] Spin reorientation in easy-plane kagome ferromagnet Li9Cr3(P2O7)3(PO4)2
Yuanhao Dong(董元浩), Ying Fu(付盈), Yixuan Liu(刘以轩), Zhanyang Hao(郝占阳), Le Wang(王乐), Cai Liu(刘才), Ke Deng(邓可), and Jiawei Mei(梅佳伟). Chin. Phys. B, 2023, 32(5): 057506.
[10] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[11] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[12] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[13] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[14] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[15] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
No Suggested Reading articles found!