Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 088101    DOI: 10.1088/1674-1056/ad4cd5
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Single crystal growth and transport properties of narrow-bandgap semiconductor RhP2

De-Sheng Wu(吴德胜)1,3,†, Ping Zheng(郑萍)1,2, and Jian-Lin Luo(雒建林)1,2,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
Abstract  We report the growth of high-quality single crystals of RhP$_{2}$, and systematically study its structure and physical properties by transport, magnetism, and heat capacity measurements. Single-crystal x-ray diffraction reveals that RhP$_{2}$ adopts a monoclinic structure with the cell parameters a=5.7347(10) Å, b=5.7804(11) Å, and c=5.8222(11) Å, space group $P2_{1}/c$ (No. 14). The electrical resistivity $\rho (T)$ measurements indicate that RhP$_{2}$ exhibits narrow-bandgap behavior with the activation energies of 223.1 meV and 27.4 meV for two distinct regions, respectively. The temperature-dependent Hall effect measurements show electron domain transport behavior with a low charge carrier concentration. We find that RhP$_{2}$ has a high mobility $\mu_{\rm e}\sim210$ cm$^{2}$$\cdot$V$^{-1}$$\cdot$s$^{-1}$ with carrier concentrations $n_{\rm e}\sim 3.3\times 10^{18}$ cm$^{-3}$ at 300 K with a narrow-bandgap feature. The high mobility $\mu_{\rm e}$ reaches the maximum of approximately 340 cm$^{2}$$\cdot$V$^{-1}$$\cdot$s$^{-1}$ with carrier concentrations $n_{\rm e}\sim 2\times 10^{18}$ cm$^{-3}$ at 100 K. No magnetic phase transitions are observed from the susceptibility $\chi (T)$ and specific heat $C_{\rm p}(T)$ measurements of RhP$_{2}$. Our results not only provide effective potential as a material platform for studying exotic physical properties and electron band structures but also motivate further exploration of their potential photovoltaic and optoelectronic applications.
Keywords:  single crystal growth      narrow band system      electrical transport      high mobilities  
Received:  21 February 2024      Revised:  26 April 2024      Accepted manuscript online: 
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  71.28.+d (Narrow-band systems; intermediate-valence solids)  
  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0302901), the Strategic Priority Research Program, the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. XDB33010100), the National Natural Science Foundation of China (Grant Nos. 12134018, 11921004, and 11634015), the Foundation of Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, China (Grant No. QD2301005), the Postdoctoral Science Foundation of China (Grant No. 2021M693370), and the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  De-Sheng Wu, Jian-Lin Luo     E-mail:  dswu@iphy.ac.cn;jlluo@iphy.ac.cn

Cite this article: 

De-Sheng Wu(吴德胜), Ping Zheng(郑萍), and Jian-Lin Luo(雒建林) Single crystal growth and transport properties of narrow-bandgap semiconductor RhP2 2024 Chin. Phys. B 33 088101

[1] Cheng P and Yang Y 2022 Acc. Chem. Res. 53 1218
[2] Sitt A, Hadar I and Banin U 2013 Nano Today 8 494
[3] An S, Park H J and Kim M 2023 J. Mater. Chem. C 11 2430
[4] Baker I M 2017 2017 Springer Handbook of Electronic and Photonic Materials (Berlin: Springer) p. 1
[5] Massidda S, Continenza A, Freeman A, Freeman J, de Pascale T M, Meloni F and Serra M 1990 Phys. Rev. B 41 12079
[6] Klimov A E and Shumsky V N 2009 Physica B 404 5028
[7] Castellanos-Gómez A 2015 J. Phys. Chem. Lett. 6 4280
[8] Prytz Ø and Flage Larsen E 2009 J. Phys.: Condens. Matter 22 015502
[9] Zhang S, Ou X, Xiang Q, Carabineiro Sónia A C, Fan J and Lv K 2022 Chemosphere 303 135085
[10] Niu S, Huyan H, Liu Y, Yang L, Yeung M, Ye K, Blankemeier L, Orvis T, Sarkar D, Singh D J, Kapadia R and Ravichandran J 2017 Adv. Mater. 29 1604733
[11] Johnston W D, Miller R C and D H Damon 1965 J. Less-Common Met. 8 272
[12] Hulliger F 1964 Nature 201 381
[13] Fjellvåg H, Selte K and Stave F E 1984 Acta Chem. Scand. A 38 687
[14] Sun P, Oeschler N, Johnsen S, Iversen B and Steglich F 2009 Phys. Rev. B 79 153308
[15] Wu D S, Qian Y T, Liu Z Y, Wu W, Li Y J, Na S H, Shao Y T, Zheng P, Li G, Cheng J G, Weng H M and Luo J L 2020 Chin. Phys. B 29 037101
[16] Lee K, Lange G. F, Wang L L, Kuthanazhi B, Trevisan T V, Jo N H, Schrunk B, Orth P P, Slager R, Canfield P C and Kaminski A 2021 Nat. Commun. 12 1855
[17] Hulliger F 1963 Phys. Lett. 4 282
[18] Kjekshus A, Nolander B, Klaeboe P, Cyvin S J, Lagerlund I and Ehrenberg L 1971 Acta Chem. Scand. 25 411
[19] Goodenough J B 1972 J Solid State Chem. 5 144
[20] Wu D S, Mi Z Y, Li Y J, Wu W, Li P L, Song Y T, Liu G T, Li G and Luo J L 2019 Chin. Phys. Lett. 36 077102
[21] http://shelx.uni-goettingen.de/
[22] Topological properties and more for material P2Rh (sg14) — Materiae (iphy.ac.cn)
[23] Topological Materials Database (topologicalquantumchemistry.org)
[24] https://atomly.net/#/matdatades/0000084348
[1] Single crystal growth and characterization of 166-type magnetic kagome metals
Huangyu Wu(吴黄宇), Jinjin Liu(刘锦锦), Yongkai Li(李永恺), Peng Zhu(朱鹏), Liu Yang(杨柳), Fuhong Chen(陈富红), Deng Hu(胡灯), and Zhiwei Wang(王秩伟). Chin. Phys. B, 2024, 33(9): 098101.
[2] Anisotropic metal-insulator transition in strained VO2(B) single crystal
Zecheng Ma(马泽成), Shengnan Yan(闫胜楠), Zenglin Liu(刘增霖), Tao Xu(徐涛), Fanqiang Chen(陈繁强), Sicheng Chen(陈思成), Tianjun Cao(曹天俊), Litao Sun(孙立涛), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(6): 067103.
[3] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[4] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[5] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[6] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[7] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[8] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[9] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[10] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
[11] Structural and electrical transport properties of Dirac-like semimetal PdSn4 under high pressure
Bowen Zhang(张博文), Chao An(安超), Yonghui Zhou(周永惠), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), Zhaorong Yang(杨昭荣). Chin. Phys. B, 2019, 28(12): 126202.
[12] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[13] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[14] Growth and characterization of CaCu3Ru4O12 single crystal
Wang Rong-Juan (王蓉娟), Zhu Yuan-Yuan (朱媛媛), Wang Li (王理), Liu Yong (刘雍), Shi Jing (石兢), Xiong Rui (熊锐), Wang Jun-Feng (王俊峰). Chin. Phys. B, 2015, 24(9): 097501.
[15] Influence of vacuum degree on growth of Bi2Te3 single crystal
Tang Yan-Kun (唐雁坤), Zhao Wen-Juan (赵文娟), Zhu Hua-Qiang (朱化强), Huang Yong-Chao (黄勇潮), Cao Wei-Wei (曹伟伟), Yang Qian (杨倩), Yao Xiao-Yan (姚晓燕), Zhai Ya (翟亚), Dong Shuai (董帅). Chin. Phys. B, 2015, 24(7): 078101.
No Suggested Reading articles found!