| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Resonance-assisted drastic transition in single-molecule magnets |
| Lei Gu(古磊)1,†, Jia Luo(罗佳)1, Ruqian Wu2, and Guoping Zhao(赵国平)1,3,‡ |
1 College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China; 2 Department of Physics and Astronomy, University of California, Irvine, California 92697, USA; 3 Center for Magnetism and Spintronics, Sichuan Normal University, Chengdu 610068, China |
|
|
|
|
Abstract Using exact diagonalization of the Hamiltonian and transition matrix in the energy eigenbasis, we perform model calculations of the magnetic relaxation rate in single-molecule magnets. A careful examination of the transition matrix reveals that resonant tunneling does not enhance transitions between the nearly degenerate states; rather, it suppresses them. Instead, transitions from one state in the degenerate pair to neighboring states of the other are significantly enhanced. We conduct a detailed analysis of the transition rates to clearly demonstrate how resonant tunneling modulates these processes. This work provides a substantial reinterpretation of the resonant magnetic relaxation in single-molecule magnets and clearly identifies the dominant relaxation pathways.
|
Received: 06 May 2025
Revised: 23 June 2025
Accepted manuscript online: 26 June 2025
|
|
PACS:
|
75.50.Xx
|
(Molecular magnets)
|
| |
76.30.-v
|
(Electron paramagnetic resonance and relaxation)
|
| |
76.60.Es
|
(Relaxation effects)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12404085, 12474122, 52171188, 51771127, and 52111530143), the Fund from DOE-BES (Grant No. DE-FG02-05ER46237), and the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province, China (Grant No. 2021ZYD0025). |
Corresponding Authors:
Lei Gu, Guoping Zhao
E-mail: gulei@sicnu.edu.cn;zhaogp@uestc.edu.cn
|
Cite this article:
Lei Gu(古磊), Jia Luo(罗佳), Ruqian Wu, and Guoping Zhao(赵国平) Resonance-assisted drastic transition in single-molecule magnets 2025 Chin. Phys. B 34 127501
|
[1] Gaita-Arino A, Luis F, Hill S and Coronado E 2019 Nat. Chem. 11 301 [2] Coronado E 2020 Nat. Rev. Mater. 5 87 [3] Chilton N F 2022 Ann. Rev. Mater. Res. 52 79 [4] Mirzoyan R, Kazmierczak N P and Hadt R G 2021 Chemistry - A European Journal 27 9482 [5] Kazmierczak N P and Hadt R G 2022 J. Am. Chem. Soc. 144 20804 [6] Shrivastava K N 1983 Physica Status Solidi (b) 117 437 [7] Gatteschi D, Sessoli R and Villain J 2011 Molecular Nanomagnets (Oxford: Oxford University Press) [8] Briganti M, Santanni F, Tesi L, Totti F, Sessoli R and Lunghi A 2021 J. Am. Chem. Soc. 143 13633 [9] Reta D, Kragskow J G C and Chilton N F 2021 J. Am. Chem. Soc. 143 5943 [10] Gu L and Wu R 2020 Phys. Rev. Lett. 125 117203 [11] Gu L and Wu R 2021 Phys. Rev. B 103 014401 [12] Gu L, Li J and Wu R 2022 J. Magn. Magn. Mater. 564 170138 [13] Gu L, Luo J, Luo Q, Zhai Y, Zheng Y Z and Zhao G 2025 Chin. Phys. Lett. 42 027401 [14] Lunghi A 2022 Sci. Adv. 8 [15] Lunghi A 2023 Spin-phonon relaxation in magnetic molecules: Theory, predictions and insights Challenges and Advances in Computational Chemistry and Physics (Springer International Publishing) pp. 219–289 [16] Su D, Zhang Y Q, Liu E K and Sun Y 2023 Chin. Phys. B 32 087505 [17] Garanin D A, Chudnovsky E M and Schilling R 2000 Phys. Rev. B 61 12204 [18] Giraud R, WernsdorferW, Tkachuk A M, Mailly D and Barbara B 2001 Phys. Rev. Lett. 87 057203 [19] Ishikawa N, Sugita M and Wernsdorfer W 2005 J. Am. Chem. Soc. 127 3650 [20] Chen Y C, Liu J L, Wernsdorfer W, Liu D, Chibotaru L F, Chen X M and TongML 2017 Angewandte Chemie International Edition 56 4996 [21] Rousochatzakis I, Ajiro Y, Mitamura H, Kögerler P and Luban M 2005 Phys. Rev. Lett. 94 147204 [22] WernsdorferW, Bhaduri S, Vinslava A and Christou G 2005 Phys. Rev. B 72 214429 [23] Vogelsberger M and Garanin D A 2006 Phys. Rev. B 73 092412 [24] Irländer K and Schnack J 2020 Phys. Rev. B 102 054407 [25] Mattioni A, Staab J K, Blackmore W J A, Reta D, Iles-Smith J, Nazir A and Chilton N F 2024 Nat. Commun. 15 485 [26] Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R and Barbara B 1996 Nature 383 145 [27] Friedman J R, SarachikMP, Tejada J and Ziolo R 1996 Phys. Rev. Lett. 76 3830 [28] Hernández J M, Zhang X X, Luis F, Bartolomé J, Tejada J and Ziolo R 1996 Europhys. Lett. 35 301 [29] Barbara B, Thomas L, Lionti F, Sulpice A and Caneschi A 1998 J. Magn. Magn. Mater. 177–181 1324 [30] Barbara B, Thomas L, Lionti F, Chiorescu I and Sulpice A 1999 J. Magn. Magn. Mater. 200 167 [31] Wernsdorfer W, Ohm T, Sangregorio C, Sessoli R, Mailly D and Paulsen C 1999 Phys. Rev. Lett. 82 3903 [32] Jang Z H, Lascialfari A, Borsa F and Gatteschi D 2000 Phys. Rev. Lett. 84 2977 [33] Gatteschi D and Sessoli R 2003 Angewandte Chemie International Edition 42 268 [34] Leuenberger M N and Loss D 2000 Phys. Rev. B 61 1286 [35] Kent A D, Zhong Y, Bokacheva L, Ruiz D, Hendrickson D N and Sarachik M P 2000 J. Appl. Phys. 87 5493 [36] Kent A D, Zhong Y, Bokacheva L, Ruiz D, Hendrickson D N and Sarachik M P 2000 Europhys. Lett. 49 521 [37] Zhong Y, Sarachik M P, Yoo J and Hendrickson D N 2000 Phys. Rev. B 62 R9256 [38] Chiorescu I, Giraud R, Jansen A G M, Caneschi A and Barbara B 2000 Phys. Rev. Lett. 85 4807 [39] Fort A, Rettori A, Villain J, Gatteschi D and Sessoli R 1998 Phys. Rev. Lett. 80 612 [40] Garanin D A and Chudnovsky E M 1997 Phys. Rev. B 56 11102 [41] Luis F, Bartolomé J and Fernández J F 1998 Phys. Rev. B 57 505 [42] Harman W H, Harris T D, Freedman D E, Fong H, Chang A, Rinehart J D, Ozarowski A, Sougrati M T, Grandjean F, Long G J, Long J R and Chang C J 2010 J. Am. Chem. Soc. 132 18115 [43] Vallejo J, Castro I, Ruiz-Garc′ıa R, Cano J, Julve M, Lloret F, Munno G D, Wernsdorfer W and Pardo E 2012 J. Am. Chem. Soc. 134 15704 [44] Zhu Y Y, Cui C, Zhang Y Q, Jia J H, Guo X, Gao C, Qian K, Jiang S D, Wang B W, Wang Z M and Gao S 2013 Chem. Sci. 4 1802 [45] Zadrozny J M, Atanasov M, Bryan A M, Lin C Y, Rekken B D, Power P P, Neese F and Long J R 2013 Chem. Sci. 4 125 [46] Lucaccini E, Sorace L, Perfetti M, Costes J P and Sessoli R 2014 Chem. Commun. 50 1648 [47] Gómez-Coca S, Urtizberea A, Cremades E, Alonso P J, Camón A, Ruiz E and Luis F 2014 Nat. Commun. 5 4300 [48] Liddle S T and van Slageren J 2015 Chem. Soc. Rev. 44 6655 [49] Rajnák C, Titiš J, Moncol J, Renz F and Boča R 2019 Chem. Commun. 55 13868 [50] Wang J, Ruan Z Y, Li Q W, Chen Y C, Huang G Z, Liu J L, Reta D, Chilton N F, Wang Z X and Tong M L 2019 Dalton Transactions 48 1686 [51] Kobayashi F, Ohtani R, Nakamura M, Lindoy L F and Hayami S 2019 Inorganic Chemistry 58 7409 [52] Cui H H, Lu F, Chen X T, Zhang Y Q, Tong W and Xue Z L 2019 Inorganic Chemistry 58 12555 [53] Wäckerlin C, Donati F, Singha A, Baltic R, Rusponi S, Diller K, Patthey F, Pivetta M, Lan Y, Klyatskaya S, Ruben M, Brune H and Dreiser J 2016 Adv. Mater. 28 5195 [54] Goodwin C A P, Ortu F, Reta D, Chilton N F and Mills D P 2017 Nature 548 439 [55] Abbasi P, Quinn K, Alexandropoulos D I, Damjanović M, Wernsdorfer W, Escuer A, Mayans J, Pilkington M and Stamatatos T C 2017 J. Am. Chem. Soc. 139 15644 [56] Guo F S, Day B M, Chen Y C, Tong M L, Mansikkamäki A and Layfield R A 2018 Science 362 1400 [57] Randall McClain K, Gould C A, Chakarawet K, Teat S J, Groshens T J, Long J R and Harvey B G 2018 Chem. Sci. 9 8492 [58] Gould C A, McClain K R, Reta D, Kragskow J G C, Marchiori D A, Lachman E, Choi E S, Analytis J G, Britt R D, Chilton N F, Harvey B G and Long J R 2022 Science 375 198 [59] Kragskow J G C, Mattioni A, Staab J K, Reta D, Skelton J M and Chilton N F 2023 Chem. Soc. Rev. 52 4567 [60] Breuer H P and Petruccione F 2002 The theory of open quantum systems (Oxford: Oxford University Press) [61] Calero C, Chudnovsky E M and Garanin D A 2006 Phys. Rev. B 74 094428 [62] Ho L T A and Chibotaru L F 2018 Phys. Rev. B 97 024427 [63] Chiesa A, Cugini F, Hussain R, Macaluso E, Allodi G, Garlatti E, Giansiracusa M, Goodwin C A P, Ortu F, Reta D, Skelton J M, Guidi T, Santini P, Solzi M, De Renzi R, Mills D P, Chilton N F and Carretta S 2020 Phys. Rev. B 101 174402 [64] Nabi R, Staab J K, Mattioni A, Kragskow J G C, Reta D, Skelton J M and Chilton N F 2023 J. Am. Chem. Soc. 145 24558 [65] Abragam A and Bleaney B 2012 Electron paramagnetic resonance of transition ions (Oxford: Oxford University Press) |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|