| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Preparation of high-performance Cu2Se thermoelectric materials by the KCl flux method and research on thermoelectric transport performance |
| Yonggui Tao(陶永贵)1, Chisheng Deng(邓池升)1, Jicheng Li(李吉成)1,2, Wen Ge(葛文)1, Ying Zhang(张盈)1, Yujie Xiang(向玉婕)1, and Shukang Deng(邓书康)1,† |
1 School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, China; 2 School of Intelligent Science and Engineering, Yunnan Technology and Business University, Kunming 650201, China |
|
|
|
|
Abstract This study achieves a notable enhancement in the thermoelectric performance of copper selenide compounds exhibiting liquid-like characteristics via an innovative processing method. A KCl flux-assisted high-temperature melting and slow-cooling strategy was employed to fabricate nanolayered Cu$_{2}$Se (KCl)$_{x}$ materials ($x =0$-3, denoted as S$_{0}$-S$_{3}$). Systematic characterization reveals that the coexistence of $\alpha $ and $\beta $ phases at room temperature creates favorable conditions for optimizing carrier transport. XPS analysis confirms the substitution of low-binding-energy Se$^{2-}$ by high-binding-energy Cl$^{-}$ ions within the lattice, effectively suppressing copper ion migration and remarkably improving the material's structural stability. Microstructural investigations demonstrate that all samples exhibit nanolayered stacking architectures abundant with edge dislocations. This multiscale defect architecture induces strong phonon scattering effects. Hall measurements indicate that the KCl flux-assisted processing facilitates the formation of highly ordered nanostructures, thereby enhancing carrier mobility and structural stability. Although the carrier concentration exhibits a slight decrease compared with the flux-free samples, the significant improvement in microstructural quality plays a crucial role in the synergistic optimization of electrical conductivity and the Seebeck coefficient. Notably, sample S$_{2}$ exhibited a considerable electrical conductivity, reaching approximately $1.0\times 10^{5}$ S$\cdot $m$^{-1}$ at 300 K. More strikingly, the cooperative effect of high-density edge dislocations and dopant atoms elevates material entropy, enabling sample S$_{3}$ to attain an ultralow lattice thermal conductivity of 0.55 W$\cdot $m$^{-1}\cdot $K$^{-1}$ at 350 K. Through multi-mechanism coordination, sample S$_{2}$ achieved a high ZT value of 1.45 at 700 K, representing a 2.7-fold improvement compared with traditional synthesis methods. This work provides new insights into performance optimization of liquid-like thermoelectric materials through defect engineering and entropy manipulation.
|
Received: 25 February 2025
Revised: 30 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
73.50.Lw
|
(Thermoelectric effects)
|
| |
74.25.fc
|
(Electric and thermal conductivity)
|
| |
65.20.-w
|
(Thermal properties of liquids)
|
| |
06.60.Ei
|
(Sample preparation)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62464013). |
Corresponding Authors:
Shukang Deng
E-mail: skdeng@126.com
|
Cite this article:
Yonggui Tao(陶永贵), Chisheng Deng(邓池升), Jicheng Li(李吉成), Wen Ge(葛文), Ying Zhang(张盈), Yujie Xiang(向玉婕), and Shukang Deng(邓书康) Preparation of high-performance Cu2Se thermoelectric materials by the KCl flux method and research on thermoelectric transport performance 2025 Chin. Phys. B 34 097306
|
[1] He J and Tritt T M 2017 Science 357 eaak9997 [2] Choo S, Lee J, Ş işik B, Jung S J, Kim K, Yang S E, Jo S, Nam C, Ahn S, Lee H S, Chae H G, Kim S K, LeBlanc S and Son J S 2024 Nature Energy 9 1105 [3] Fan G, Liu K, Su H, Luo Y, Geng Y, Chen L, Wang B, Mao Z, Sui X and Feng X 2022 Chemical Engineering Journal 434 134702 [4] Byeon D, Sobota R, Delime-Codrin K, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M and Takeuchi T 2019 Nat. Commun. 10 72 [5] Yang D, Zhang D, Ao D, Nisar M, Mansoor A, Chen Y, Li F, Ma H, Liang G, Zhang X, Fan P and Zheng Z 2023 Nano Energy 117 108930 [6] Hwang T Y, Choi Y, Song Y, Eom N S A, Kim S, Cho H B, Myung N V and Choa Y H 2018 Journal of Materials Chemistry C 6 972 [7] Zhao L, Islam S M K N, Wang J, Cortie D L, Wang X, Cheng Z, Wang J, Ye N, Dou S, Shi X, Chen L, Snyder G J and Wang X 2017 Nano Energy 41 164 [8] Liu H, Yuan X, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H and Uher C 2013 Advanced Materials 25 6607 [9] Yang L, Chen Z G, Han G, Hong M and Zou J 2016 Acta Materialia 113 140 [10] Rapaka S S, Anwar S, Singh J and Anwar S 2023 Physica B 665 415044 [11] Zhao K, Liu K, Yue Z, Wang Y, Song Q, Li J, Guan M, Xu Q, Qiu P, Zhu H, Chen L and Shi X 2019 Advanced Materials 31 1903480 [12] Zhao X, Li M, Ma R, Zhang Y and Song H Z 2024 J. Alloys Compd. 971 172787 [13] TangW, QianW, Jia S, Li K, Zhou Z, Lan J, Lin Y H and Yang X 2023 Materials Today Physics 35 101104 [14] Yin H, Wang Z Y, Yan X, Zhang Y X, Yang X, Wang C Y, Ge Z and Feng J 2024 Inorganic Chemistry 63 22737 [15] Wang X, Xu Y, Liu X, Tan L, Gu H, Du X and Li D 2024 Journal of Energy Chemistry 95 336 [16] Hu X,Wu Y, Zou Y and Yang G 2024 Ceramics International 50 10285 [17] Yan X, Cao Y, Wang X, Zhang J, Xu S, Li G and Chen B 2024 Journal of Materials Chemistry C 12 13875 [18] Mikami M, Yoshimura M, Mori Y, Sasaki T, Funahashi R and Matsubara I 2002 Jpn. J. Appl. Phys. 41 L777 [19] Liu W, Shen L, Shai X, Sun L, Lu J, Chen J, Ge W and Deng S 2019 CrystEngComm 21 6850 [20] Zhao X, Yu T, Zhou B, Ning S, Chen X, Qi N and Chen Z 2024 ACS Applied Materials & Interfaces 16 1333 [21] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J and Kovalenko M V 2015 Nano Lett. 15 5635 [22] Zuo X, Chang K, Zhao J, Xie Z, Tang H, Li B and Chang Z 2016 Journal of Materials Chemistry A 4 51 [23] Chen M, Liu W, Ding P, Guo F, Li Z, Chen Y, Yi W, Sun Y, Lu J, Kantorovich L and Yu M 2025 Nat. Commun. 16 1614 [24] Jin H, Wiendlocha B and Heremans J P 2015 Energy & Environmental Science 8 2027 [25] Manthiram A 2022 ACS Energy Letters 7 2404 [26] Yang Y, Wu Q, Deng J, Wang J, Xia Y, Fu X, Tian Q, Zhang L, Yin L J, Tian Y, Xie S Y, Zhang L and Qin Z 2021 Chin. Phys. B 30 116802 [27] Ma X, Shai X, Ding Y, Zheng J, Wang J, Sun J, Li X, Chen W, Wei T, Ren W, Gao L, Deng S and Zeng C 2023 Molecules 28 2629 [28] Liu Y, Hu Z, Tong X, Graf D and Petrovic C 2023 Phys. Rev. B 108 045135 [29] Day T W, Weldert K S, Zeier W G, Chen B R, Moffitt S L, Weis U, Jochum K P, Panthöfer M, Bedzyk M J, Snyder G J and Tremel W 2015 Chemistry of Materials 27 7018 [30] Anjum F, Bhattacharjee D, Bhattacharya A and Maiti T 2025 Small 21 2412711 [31] Ramaswamy P, Devkota S, Pokharel R, Nalamati S, Stevie F, Jones K, Reynolds L and Iyer S 2021 Scientific Reports 11 8329 [32] Zhang Z L,Wang T, Nisar M, Chen Y X, Li F, Chen S, Liang G X, Fan P and Zheng Z H 2023 Journal of Advanced Ceramics 12 1767 [33] Ogawa S, Tsuda Y, Sakamoto T, Okigawa Y, Masuzawa T, Yoshigoe A, Abukawa T and Yamada T 2022 Applied Surface Science 605 154748 [34] Zhao Q, Zhang J, Xia G, Ma S, Fan S, Ping X, Hao L and Zhang Y 2025 J. Alloys Compd. 1010 178224 [35] Ying P, Jian Q, Gong Y, Song T, Yang Y, Geng Y, Huang J, Sun R, Chen C, Shen T, Li Y, DouW, Liang C, Liu Y, Xiang D, Feng T, Fei X, Zhang Y, Song K, Zhang Y, Wu H and Tang G 2025 Nat. Commun. 16 3305 [36] Wang Q, Li Z, Xue Y, Gao Z,Wang A,Wang J andWang S 2024 Appl. Phys. Lett. 124 192104 [37] Zhou L, Li Q, Jin M, Zhang R and Zhang Q 2022 Thin Solid Films 741 139024 [38] Xu L, Xiao Y, Wang S, Cui B, Wu D, Ding X and Zhao L D 2022 Nat. Commun. 13 6449 [39] Li P, Phillips N W, Leake S, Allain M, Hofmann F and Chamard V 2021 Nat. Commun. 12 7059 [40] Bai H, Su X, Yang D, Zhang Q, Tan G, Uher C, Tang X andWu J 2021 Advanced Functional Materials 31 2100431 [41] Rowe D M 2005 Thermoelectrics handbook: macro to nano (Boca Raton: CRC Press) [42] Li B, Li M, Qi H, Zu X, Qiao L and Xiao H 2023 Crystals 13 1586 [43] Zhao C, Li Z, Fan T, Xiao C and Xie Y 2020 Research 2020 9652749 [44] Brown D R, Day T W, Borup K A, Christensen S, Iversen B B and Snyder G J 2013 APL Materials 1 052107 [45] Huang Z, Jiang R, Li P, Liu X, Chen G, Zhao L, Li L, Zhao P, Meng W, Jia S, Zheng H and Wang J 2024 Nano Today 58 102460 [46] WangW, Liu S,Wang Y, Jia B, Huang Y, Xie L, Jiang B and He J 2024 Science Advances 10 eadp4372 [47] Ghosh S, Raman L, Sridar S and Li W 2024 Crystals 14 432 [48] Chen J, Liu T, Bao D, Zhang B, Han G, Liu C, Tang J, Zhou D, Yang L and Chen Z G 2020 Nanoscale 12 20536 [49] Xue L, Zhang Z, Shen W, Ma H, Zhang Y, Fang C and Jia X 2019 Journal of Materiomics 5 103 [50] Zhu Y B, Zhang B P and Liu Y 2017 Physical Chemistry Chemical Physics 19 27664 [51] Xing C, Zhang Y, Xiao K, Han X, Liu Y, Nan B, Ramon M G, Lim K H, Li J, Arbiol J, Poudel B, Nozariasbmarz A, Li W, Ibáñez M and Cabot A 2023 ACS Nano 17 8442 [52] Mac T K, Ta T T, Nguyen H T, Hoang N V, Pham T L H, Duong V T, Pham A T T, Phan B T, Cho S and Duong A T 2023 Journal of Solid State Chemistry 322 123998 [53] Fan P, Hou W, Li L, Li S, Wang J, Cheng Z and Wang C 2023 Physica B 654 414725 [54] Jin Z, Mao T, Qiu P, Yue Z, Wang L, Zhao K, Ren D, Shi X and Chen L 2021 Materials Today Physics 21 100550 [55] Yin Z, Lu R, Bailey T P, Ma T, Uher C and Poudeu P F P 2024 Chemical Engineering Journal 501 157558 [56] Lu J, Li D, LiuW, Shen L, Chen J, GeWand Deng S 2020 Chin. Phys. B 29 127403 [57] Jian Q, Gong Y, Chen C, Sun R, Zhao S, Shen T, Zhang Q, Geng Y, Li Y, Dou W, Liang C, Liu Y, Xiang D, Ying P and Tang G 2025 ACS Applied Materials & Interfaces 17 15527 [58] Yu J, Liu X, Hu H, Jiang Y, Zhuang H L, Li H, Su B, Li J W, Han Z, Wang Z, Chen L, Hayashi K, Miyazaki Y, Mehdi B L and Li J F 2024 Joule 8 2652 [59] Zhou Z, Huang Y,Wei B, Yang Y, Yu D, Zheng Y, He D, ZhangW, Zou M, Lan J L, He J, Nan C W and Lin Y H 2023 Nat. Commun. 14 2410 [60] Yu J, Hu H, Jiang Y, Zhuang H L, Thong H C, Su B, Li J W, Han Z, Li H, Pei J and Li J F 2024 Advanced Energy Materials 14 2303942 [61] Lourdhusamy V, Paulraj I, Kannan V P and Liu C J 2025 Journal of Materials Chemistry A 13 6027 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|