| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Single crystal growth and electronic structure of Fe-doped Sr3Ir2O7 |
| Muhammad Waqas1, Bingqian Wang(王冰倩)1, Shuting Peng(彭舒婷)1, Jianchang Shen(沈建昌)1,2, Linwei Huai(淮琳崴)1,2, Xiupeng Sun(孙秀鹏)1,2, Yu Miao(缪宇)1,2, Pelda Uzun1, Runqing Luan(栾润青)1,2, Zikun Feng(冯梓琨)1,2, Dai Pan(潘岱)1,2, Xinru Yong(勇欣茹)1,2, Hongxu Sun(孙鸿绪)1,2, Zhipeng Ou(欧志鹏)1,2,†, and Junfeng He(何俊峰)1,2,‡ |
1 Department of Physics and CAS (Chinese Academy of Sciences) Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China; 2 Hefei National Laboratory, University of Science and Technology of China 230088, China |
|
|
|
|
Abstract Metal-insulator transition (MIT) in perovskite iridium oxides Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ represents one of the most attractive phenomena exemplifying the cooperation of Coulomb interaction and spin-orbit coupling (SOC). MIT takes place when Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ ($n = 1$, 2) is doped with carriers. While electron-doped Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ ($n = 1$, 2) systems have been extensively investigated, hole-doped samples are still limited. Here, we report the first growth of Fe-doped (hole-doped) Sr$_{3}$Ir$_{2}$O$_{7}$ single crystals [Sr$_{3}$(Ir$_{1-x}$Fe$_{x}$)$_{2}$O$_{7}$] with the doping level $0.1\le x \le 0.28$. An MIT behavior is observed at the doping level of $x \sim 0.16$ from resistivity measurements. Electronic structures of Fe-doped Sr$_{3}$Ir$_{2}$O$_{7}$ have been revealed by angle-resolved photoemission spectroscopy (ARPES) measurements. The evident energy shift of the band structure indicates higher hole-doping level as compared with Rh-doped Sr$_{3}$Ir$_{2}$O$_{7}$. Our results demonstrate that Fe doping serves as an effective approach for heavily hole doping in Sr$_{3}$Ir$_{2}$O$_{7}$, thereby offering a powerful strategy to modulate MIT in this material system.
|
Received: 17 March 2025
Revised: 13 May 2025
Accepted manuscript online: 19 May 2025
|
|
PACS:
|
71.10.Hf
|
(Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems)
|
| |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
| |
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
| |
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074358), the National Key Research and Development Program of China (Grant No. 2024YFA1408103), the International Partnership Program of the Chinese Academy of Sciences (Grant No. 123GJHZ2022035MI), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802), and the Fundamental Research Funds for the Central Universities (Grant No. WK3510000015). |
Corresponding Authors:
Zhipeng Ou, Junfeng He
E-mail: zhipeng_ou@mail.ustc.edu.cn;jfhe@ustc.edu.cn
|
Cite this article:
Muhammad Waqas, Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Jianchang Shen(沈建昌), Linwei Huai(淮琳崴), Xiupeng Sun(孙秀鹏), Yu Miao(缪宇), Pelda Uzun, Runqing Luan(栾润青), Zikun Feng(冯梓琨), Dai Pan(潘岱), Xinru Yong(勇欣茹), Hongxu Sun(孙鸿绪), Zhipeng Ou(欧志鹏), and Junfeng He(何俊峰) Single crystal growth and electronic structure of Fe-doped Sr3Ir2O7 2025 Chin. Phys. B 34 107101
|
[1] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039 [2] Dynes R C, Garno J P, Hertel G B and Orlando T P 1984 Phys. Rev. Lett. 53 2437 [3] Klein T, Achatz P, Kacmarcik J, Marcenat C, Gustafsson F, Marcus J, Bustarret E, Pernot J, Omnes F, Sernelius B E, Persson C, Ferreira da Silva A and Cytermann C 2007 Phys. Rev. B 75 165313 [4] García-Muñoz J L, Rodríguez-Carvajal J and Lacorre P 1992 Europhys. Lett. 20 241 [5] Lee C H, Matsuhata H, Yamaguchi H, Sekine C, Kihou K, Suzuki T, Noro T and Shirotani I 2004 Phys. Rev. B 70 153105 [6] Hillenius S J, Coleman R V, Fleming R M and Cava R J 1981 Phys. Rev. B 23 1567 [7] Bertinshaw J, Kim Y K, Khaliullin G and Kim B J 2019 Annu. Rev. Condens. Matter. Phys. 10 315 [8] Wang Q, Cao Y,Waugh J A, Park S R, Qi T F, Korneta O B, Cao G and Dessau D S 2013 Phys. Rev. B 87 245109 [9] Subramanian M A, Crawford M K, Harlow R L, Ami T, Fernandez- Baca J A, Wang Z R and Johnston D C 1994 Physica C 235-240 743 [10] Moon S J, Jin H, Kim K W, Choi W S, Lee Y S, Yu J, Cao G, Sumi A, Funakubo H, Bernhard C and Noh T W 2008 Phys. Rev. Lett. 101 226402 [11] Rau J G, Lee E K H and Kee H Y 2016 Annu. Rev. Condens. Matter. Phys. 7 195 [12] Carter J M and Kee H Y 2013 Phys. Rev. B 87 014433 [13] He J, Hafiz H, Mion T R, Hogan T, Dhital C, Chen X, Lin Q, Hashimoto M, Lu D H, Zhang Y, Markiewicz R S, Bansil A,Wilson S D and He R H 2015 Sci. Rep. 5 8533 [14] de la Torre A, Hunter E C, Subedi A, McKeown Walker S, Tamai A, Kim T K, Hoesch M, Perry R S, Georges A and Baumberger F 2014 Phys. Rev. Lett. 113 256402 [15] Affeldt G, Hogan T, Denlinger J D, Vishwanath A, Wilson S D and Lanzara A 2018 Phys. Rev. B 97 125111 [16] Brouet V, Serrier-Garcia L, Louat A, Fruchter L, Bertran F, Le Fèvre P, Rault J, Forget A and Colson D 2018 Phys. Rev. B 98 235101 [17] Song S, Kim S, Ahn G H, Seo J H, Schmehr J L, Aling M,Wilson S D, Kim Y K and Moon S J 2018 Phys. Rev. B 98 035110 [18] Schmehr J L, Mion T R, Porter Z, Aling M, Cao H, Upton M H, Islam Z, He R H, Sensarma R, Trivedi N and Wilson S D 2019 Phys. Rev. Lett. 122 157201 [19] Dhital C, Hogan T, Zhou W, Chen X, Ren Z, Pokharel M, Okada Y, Heine M, Tian W, Yamani Z, Opeil C, Helton J S, Lynn J W, Wang Z, Madhavan V and Wilson S D 2014 Nat. Commun. 5 3377 [20] Wang Z, Okada Y, O’Neal J, Zhou W, Walkup D, Dhital C, Hogan T, Clancy P, Kim Y J, Hu Y F, Santos L H, Wilson S D, Trivedi N and Madhavan V 2018 Proc. Natl. Acad. Sci. USA 115 11198 [21] Ahn G, Schmehr J L, Porter Z, Wilson S D and Moon S J 2020 Sci. Rep. 10 22340 [22] Wang B, Peng S, Ou Z,Wang Y,Waqas M, Luo Y,Wei Z, Huai L, Shen J, Miao Y, Sun X, Yin Y and He J 2023 Chin. Phys. B 32 087108 [23] Hu B, Zhao H, Zhang Y, Schlottmann P, Ye F and Cao G 2021 Phys. Rev. B 103 115122 [24] Dhital C, Khadka S, Yamani Z, de la Cruz C, Hogan T C, Disseler S M, Pokharel M, Lukas K C, Tian W, Opeil C P, Wang Z and Wilson S D 2012 Phys. Rev. B 86 100401 [25] Fujiyama S, Ohashi K, Ohsumi H, Sugimoto K, Takayama T, Komesu T, Takata M, Arima T and Takagi H 2012 Phys. Rev. B 86 174414 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|