CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic and electrical transport properties in GdAlSi and SmAlGe |
Jing Gong(巩静)1,2, Huan Wang(王欢)1,2, Xiao-Ping Ma(马小平)1,2, Xiang-Yu Zeng(曾祥雨)1,2, Jun-Fa Lin(林浚发)1,2, Kun Han(韩坤)1,2, Yi-Ting Wang(王乙婷)1,2, and Tian-Long Xia(夏天龙)1,2,3,4,† |
1 Department of Physics, Renmin University of China, Beijing 100872, China; 2 Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China; 3 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China; 4 Laboratory for Neutron Scattering, Renmin University of China, Beijing 100872, China |
|
|
Abstract We conduct a detailed examination of the magnetic and electrical transport properties in GdAlSi and SmAlGe crystals, which possess a LaPtSi-type structure (space group $I$4$_{1}md$). The magnetic susceptibility data unambiguously reveal magnetic ordering below a characteristic transition temperature ($T_{\rm N}$). For GdAlSi, a hysteresis loop is observed in the magnetization and magnetoresistance curves within the $ab$ plane when the magnetic field is applied below $T_{\rm N}$, which is around 32 K. Notable specific heat anomalies are detected at 32 K for GdAlSi and 6 K for SmAlGe, confirming the occurrence of magnetic transitions. In addition, the extracted magnetic entropy at high temperatures is consistent with the theoretical value of $R$ln($2{J}+1$) for $J=7/2$ in Gd$^{3+}$ and $J=5/2$ in Sm$^{3+}$, respectively. SmAlGe also exhibits Schottky-like specific heat contributions. Additionally, both GdAlSi and SmAlGe exhibit positive magnetoresistance and a normal Hall effect.
|
Received: 20 March 2024
Revised: 16 April 2024
Accepted manuscript online: 23 April 2024
|
PACS:
|
73.43.Qt
|
(Magnetoresistance)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
81.10.Fq
|
(Growth from melts; zone melting and refining)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12074425), the National Key R&D Program of China (Grant No. 2019YFA0308602), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 23XNKJ22). |
Corresponding Authors:
Tian-Long Xia
E-mail: tlxia@ruc.edu.cn
|
Cite this article:
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙) Magnetic and electrical transport properties in GdAlSi and SmAlGe 2024 Chin. Phys. B 33 077302
|
[1] Fujishiro Y, Kanazawa N, Kurihara R, et al. 2021 Nat. Commun. 12 317 [2] Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S and Yan B 2017 New J. Phys. 19 015008 [3] Yan B and Felser C 2017 Annu. Rev. Conden. Matter Phys. 8 337 [4] Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613 [5] Lv B, Weng H, Fu B, et al. 2015 Phys. Rev. X 5 031013 [6] Cao W, Zhao N, Pei C, et al. 2022 Phys. Rev. B 105 174502 [7] Ng T, Luo Y, Yuan J, et al. 2021 Phys. Rev. B 104 014412 [8] Yang H Y, Singh B, Gaudet J, et al. 2021 Phys. Rev. B 103 115143 [9] Suzuki T, Savary L, Liu J P, Lynn J W, Balents L and Checkelsky J G 2019 Science 365 377 [10] Hodovanets H, Eckberg C, Zavalij P, Kim H, Lin W C, Zic M, Campbell D, Higgins J and Paglione J 2018 Phys. Rev. B 98 245132 [11] Puphal P, Pomjakushin V, Kanazawa N, et al. 2020 Phys. Rev. Lett. 124 017202 [12] Piva M M, Souza J, Brousseau-Couture V, et al. 2023 Phys. Rev. Res. 5 013068 [13] Lyu M, Xiang J, Mi Z, Zhao H, Wang Z, Liu E, Chen G, Ren Z, Li G and Sun P 2020 Phys. Rev. B 102 085143 [14] Wu L, Chi S, Zuo H, Xu G, Zhao L, Luo Y and Zhu Z 2023 npj Quantum Mater. 8 4 [15] Yang H Y, Singh B, Lu B, et al. 2020 APL Mater. 8 011111 [16] Meng B, Wu H, Qiu Y, Wang C, Liu Y, Xia Z, Yuan S, Chang H and Tian Z 2019 APL Mater. 7 051110 [17] Sanchez D S, Chang G, Belopolski I, et al. 2020 Nat. Commun. 11 3356 [18] Wang J F, Dong Q X, Guo Z P, et al. 2022 Phys. Rev. B 105 144435 [19] Wang J F, Dong Q x, Huang Y F, et al. 2022 arXiv:2201.06412 [condmat.mtrl-sci] [20] Yang H Y, Gaudet J, Verma R, et al. 2023 Phys. Rev. Mater. 7 034202 [21] Dong Q X, Wang J F, Zhang L B, et al. 2023 Phys. Rev. B 108 205143 [22] Gaudet J, Yang H Y, Baidya S, et al. 2021 Nat. Mater. 20 1650 [23] Cao W, Su Y, Wang Q, et al. 2022 Chin. Phys. Lett. 39 047501 [24] Xu L, Niu H, Bai Y, et al. 2022 J. Phys.: Condens. Matter. 34 485701 [25] Zhang Y, Gao Y, Gao X J, et al. 2023 Commun. Phys. 6 134 [26] Yao X, Gaudet J, Verma R, Graf D E, Yang H Y, Bahrami F, Zhang R, Aczel A A, Subedi S, Torchinsky D H, et al. 2023 Phys. Rev. X 13 011035 [27] Gao Y, Lei S, Clements E M, Zhang Y, Gao X J, Chi S, Law K T, Yi M, Lynn J W and Morosan E 2023 arXiv:2310.09364 [cond-mat.mtrl-sci] [28] Pukas S, Lutsyshyn Y, Manyako M and Gladyshevskii E 2004 J. Alloys Compd. 367 162 [29] Zhao J and Parthé E 1990 Acta Crystall. Sec. C 46 2276 [30] Bobev S, Tobash P H, Fritsch V, Thompson J D, Hundley M F, Sarrao J L and Fisk Z 2005 J. Solid State Chem. 178 2091 [31] Laha A, Kundu A K, Aryal N, et al. 2024 Phys. Rev. B 109 035120 [32] Nag J, Das B, Bhowal S, Nishioka Y, Bandyopadhyay B, Kumar S, Kuroda K, Kimura A, Suresh K and Alam A 2023 arXiv:2312.11980 [cond-mat.str-el] [33] Zhang X, Zhang S, Jiang Z, et al. 2021 arXiv:2111.04973 [condmat.mtrl-sci] [34] Jiang J, Olmstead M M, Kauzlarich S M, Lee H O, Klavins P and Fisk Z 2005 Inorg. Chem. 44 5322 [35] Gopal E 2012 Specific heats at low temperatures (Springer Science & Business Media) [36] Bauer E and Rotter M 2010 Properties and Applications of Complex Intermetallics (World Scientific) p. 183 [37] Lüthi B 1976 AIP Conf. Proc. 34 7 [38] Furrer A 2012 Crystal field effects in metals and alloys (Springer Science & Business Media) [39] Wang C, Guo Y Q, Wang T and Yang S W 2020 Chin. Phys. B 29 127502 [40] Burzo E, Urzu I and Pierre J 1972 Phys. Status. Solidi. B 51 463 [41] Roeland L, Cock G, Muller F, Moleman A, McEwen K, Jordan R and Jones D 1975 J. Phys. F: Met. Phys. 5 L233 [42] Szade J and Less J 1987 Common. Met. 136 101 [43] Mugiraneza S and Hallas A M 2022 Commun. Phys. 5 95 [44] Shi M, Lei B, Zhu C, Ma D, Cui J, Sun Z, Ying J and Chen X 2019 Phys. Rev. B 100 155144 [45] Pippard A B 1989 Magnetoresistance in metals (Cambridge University Press) 2 [46] Tian S, Gao S, Nie S, et al. 2020 Phys. Rev. B 102 035144 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|