Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077302    DOI: 10.1088/1674-1056/ad41ba
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic and electrical transport properties in GdAlSi and SmAlGe

Jing Gong(巩静)1,2, Huan Wang(王欢)1,2, Xiao-Ping Ma(马小平)1,2, Xiang-Yu Zeng(曾祥雨)1,2, Jun-Fa Lin(林浚发)1,2, Kun Han(韩坤)1,2, Yi-Ting Wang(王乙婷)1,2, and Tian-Long Xia(夏天龙)1,2,3,4,†
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
3 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China;
4 Laboratory for Neutron Scattering, Renmin University of China, Beijing 100872, China
Abstract  We conduct a detailed examination of the magnetic and electrical transport properties in GdAlSi and SmAlGe crystals, which possess a LaPtSi-type structure (space group $I$4$_{1}md$). The magnetic susceptibility data unambiguously reveal magnetic ordering below a characteristic transition temperature ($T_{\rm N}$). For GdAlSi, a hysteresis loop is observed in the magnetization and magnetoresistance curves within the $ab$ plane when the magnetic field is applied below $T_{\rm N}$, which is around 32 K. Notable specific heat anomalies are detected at 32 K for GdAlSi and 6 K for SmAlGe, confirming the occurrence of magnetic transitions. In addition, the extracted magnetic entropy at high temperatures is consistent with the theoretical value of $R$ln($2{J}+1$) for $J=7/2$ in Gd$^{3+}$ and $J=5/2$ in Sm$^{3+}$, respectively. SmAlGe also exhibits Schottky-like specific heat contributions. Additionally, both GdAlSi and SmAlGe exhibit positive magnetoresistance and a normal Hall effect.
Keywords:  crystal growth      magnetism      magnetotransport properties      specific heat  
Received:  20 March 2024      Revised:  16 April 2024      Accepted manuscript online:  23 April 2024
PACS:  73.43.Qt (Magnetoresistance)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  81.10.Fq (Growth from melts; zone melting and refining)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12074425), the National Key R&D Program of China (Grant No. 2019YFA0308602), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 23XNKJ22).
Corresponding Authors:  Tian-Long Xia     E-mail:  tlxia@ruc.edu.cn

Cite this article: 

Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙) Magnetic and electrical transport properties in GdAlSi and SmAlGe 2024 Chin. Phys. B 33 077302

[1] Fujishiro Y, Kanazawa N, Kurihara R, et al. 2021 Nat. Commun. 12 317
[2] Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S and Yan B 2017 New J. Phys. 19 015008
[3] Yan B and Felser C 2017 Annu. Rev. Conden. Matter Phys. 8 337
[4] Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613
[5] Lv B, Weng H, Fu B, et al. 2015 Phys. Rev. X 5 031013
[6] Cao W, Zhao N, Pei C, et al. 2022 Phys. Rev. B 105 174502
[7] Ng T, Luo Y, Yuan J, et al. 2021 Phys. Rev. B 104 014412
[8] Yang H Y, Singh B, Gaudet J, et al. 2021 Phys. Rev. B 103 115143
[9] Suzuki T, Savary L, Liu J P, Lynn J W, Balents L and Checkelsky J G 2019 Science 365 377
[10] Hodovanets H, Eckberg C, Zavalij P, Kim H, Lin W C, Zic M, Campbell D, Higgins J and Paglione J 2018 Phys. Rev. B 98 245132
[11] Puphal P, Pomjakushin V, Kanazawa N, et al. 2020 Phys. Rev. Lett. 124 017202
[12] Piva M M, Souza J, Brousseau-Couture V, et al. 2023 Phys. Rev. Res. 5 013068
[13] Lyu M, Xiang J, Mi Z, Zhao H, Wang Z, Liu E, Chen G, Ren Z, Li G and Sun P 2020 Phys. Rev. B 102 085143
[14] Wu L, Chi S, Zuo H, Xu G, Zhao L, Luo Y and Zhu Z 2023 npj Quantum Mater. 8 4
[15] Yang H Y, Singh B, Lu B, et al. 2020 APL Mater. 8 011111
[16] Meng B, Wu H, Qiu Y, Wang C, Liu Y, Xia Z, Yuan S, Chang H and Tian Z 2019 APL Mater. 7 051110
[17] Sanchez D S, Chang G, Belopolski I, et al. 2020 Nat. Commun. 11 3356
[18] Wang J F, Dong Q X, Guo Z P, et al. 2022 Phys. Rev. B 105 144435
[19] Wang J F, Dong Q x, Huang Y F, et al. 2022 arXiv:2201.06412 [condmat.mtrl-sci]
[20] Yang H Y, Gaudet J, Verma R, et al. 2023 Phys. Rev. Mater. 7 034202
[21] Dong Q X, Wang J F, Zhang L B, et al. 2023 Phys. Rev. B 108 205143
[22] Gaudet J, Yang H Y, Baidya S, et al. 2021 Nat. Mater. 20 1650
[23] Cao W, Su Y, Wang Q, et al. 2022 Chin. Phys. Lett. 39 047501
[24] Xu L, Niu H, Bai Y, et al. 2022 J. Phys.: Condens. Matter. 34 485701
[25] Zhang Y, Gao Y, Gao X J, et al. 2023 Commun. Phys. 6 134
[26] Yao X, Gaudet J, Verma R, Graf D E, Yang H Y, Bahrami F, Zhang R, Aczel A A, Subedi S, Torchinsky D H, et al. 2023 Phys. Rev. X 13 011035
[27] Gao Y, Lei S, Clements E M, Zhang Y, Gao X J, Chi S, Law K T, Yi M, Lynn J W and Morosan E 2023 arXiv:2310.09364 [cond-mat.mtrl-sci]
[28] Pukas S, Lutsyshyn Y, Manyako M and Gladyshevskii E 2004 J. Alloys Compd. 367 162
[29] Zhao J and Parthé E 1990 Acta Crystall. Sec. C 46 2276
[30] Bobev S, Tobash P H, Fritsch V, Thompson J D, Hundley M F, Sarrao J L and Fisk Z 2005 J. Solid State Chem. 178 2091
[31] Laha A, Kundu A K, Aryal N, et al. 2024 Phys. Rev. B 109 035120
[32] Nag J, Das B, Bhowal S, Nishioka Y, Bandyopadhyay B, Kumar S, Kuroda K, Kimura A, Suresh K and Alam A 2023 arXiv:2312.11980
[cond-mat.str-el]
[33] Zhang X, Zhang S, Jiang Z, et al. 2021 arXiv:2111.04973 [condmat.mtrl-sci]
[34] Jiang J, Olmstead M M, Kauzlarich S M, Lee H O, Klavins P and Fisk Z 2005 Inorg. Chem. 44 5322
[35] Gopal E 2012 Specific heats at low temperatures (Springer Science & Business Media)
[36] Bauer E and Rotter M 2010 Properties and Applications of Complex Intermetallics (World Scientific) p. 183
[37] Lüthi B 1976 AIP Conf. Proc. 34 7
[38] Furrer A 2012 Crystal field effects in metals and alloys (Springer Science & Business Media)
[39] Wang C, Guo Y Q, Wang T and Yang S W 2020 Chin. Phys. B 29 127502
[40] Burzo E, Urzu I and Pierre J 1972 Phys. Status. Solidi. B 51 463
[41] Roeland L, Cock G, Muller F, Moleman A, McEwen K, Jordan R and Jones D 1975 J. Phys. F: Met. Phys. 5 L233
[42] Szade J and Less J 1987 Common. Met. 136 101
[43] Mugiraneza S and Hallas A M 2022 Commun. Phys. 5 95
[44] Shi M, Lei B, Zhu C, Ma D, Cui J, Sun Z, Ying J and Chen X 2019 Phys. Rev. B 100 155144
[45] Pippard A B 1989 Magnetoresistance in metals (Cambridge University Press) 2
[46] Tian S, Gao S, Nie S, et al. 2020 Phys. Rev. B 102 035144
[1] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
[2] Single crystal growth and characterization of 166-type magnetic kagome metals
Huangyu Wu(吴黄宇), Jinjin Liu(刘锦锦), Yongkai Li(李永恺), Peng Zhu(朱鹏), Liu Yang(杨柳), Fuhong Chen(陈富红), Deng Hu(胡灯), and Zhiwei Wang(王秩伟). Chin. Phys. B, 2024, 33(9): 098101.
[3] Single crystal growth and transport properties of narrow-bandgap semiconductor RhP2
De-Sheng Wu(吴德胜), Ping Zheng(郑萍), and Jian-Lin Luo(雒建林). Chin. Phys. B, 2024, 33(8): 088101.
[4] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1−xCo2Sn
Bo-wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[5] Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm)
Xingyu Yang(杨星宇), Qingqi Zeng(曾庆祺), Miao He(何苗), Xitong Xu(许锡童), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(7): 077501.
[6] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[7] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[8] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[9] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[10] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[11] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[12] Enhanced conductivity and weakened magnetism in Pb-doped Sr2IrO4
Zhi-Lai Yue(岳智来), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Wen-Ka Zhu(朱文卡), Li Pi(皮雳), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(1): 017402.
[13] Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals
Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2024, 33(1): 016108.
[14] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[15] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
No Suggested Reading articles found!