Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066501    DOI: 10.1088/1674-1056/acbe2f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural phase transition and transport properties in topological material candidate NaZn4As3

Qing-Xin Dong(董庆新)1,2, Bin-Bin Ruan(阮彬彬)1, Yi-Fei Huang(黄奕飞)1,2, Yi-Yan Wang(王义炎)4, Li-Bo Zhang(张黎博)1,2, Jian-Li Bai(白建利)1,2, Qiao-Yu Liu(刘乔宇)1,2, Jing-Wen Cheng(程靖雯)1,2, Zhi-An Ren(任治安)1,2,3, and Gen-Fu Chen(陈根富)1,2,3,†
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Abstract  We report a comprehensive study on a layered-structure compound of NaZn4As3, which has been predicted to be an ideal topological semimetal (TSM) candidate. It is found that NaZn4As3 undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase. The electric resistivity exhibits a metal-to-insulator-like transition at around 100 K, and then develops a plateau at low temperature, which might be related to the protected topologically conducting surface states. Our first-principles calculation confirms further that NaZn4As3 is a topological insulator (TI) for both different phases rather than a previously proposed TSM. The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated. Furthermore, an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K. The large thermopower and moderate κ indicate that NaZn4As3 and /or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance.
Keywords:  structural phase transition      thermoelectric      topological materials      crystal growth  
Received:  02 February 2023      Revised:  02 February 2023      Accepted manuscript online:  23 February 2023
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874417 and 12274440), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100), and the Fund from the Ministry of Science and Technology of China (Grant No. 2022YFA1403903).
Corresponding Authors:  Gen-Fu Chen     E-mail:  gfchen@iphy.ac.cn

Cite this article: 

Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富) Structural phase transition and transport properties in topological material candidate NaZn4As3 2023 Chin. Phys. B 32 066501

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H2008 J. Am. Chem. Soc. 130 3296
[2] Rotter M, Tegel M and Johrendt D2008 Phys. Rev. Lett. 101 107006
[3] Zhang H, et al.2008 J. Chem. Phys. 129 164713
[4] Sales B, Mandrus D and Williams R K1996 Science 272 1325
[5] Gascoin F, Ottensmann S, Stark D, Haïle S M and Snyder G J2005 Adv. Funct. Mater. 15 1860
[6] Zhang S, Yan Z, Li Y, Chen Z and Zeng H2015 Angew. Chem. 127 3155
[7] Liu H, et al.2014 ACS Nano 8 4033
[8] Jaiganesh G, Britto T M A, Eithiraj R and Kalpana G2008 J. Phys.: Condens. Matter 20 085220
[9] Kalarasse F and Bennecer B2006 J. Phys. Chem. Solids 67 846
[10] He H, Tyson C and Bobev S2011 Inorg. Chem. 50 8375
[11] Prots Y, Aydemir U, Öztürk S S and Somer M2007 Zeitschrift für Kristallographie-New Crystal Structures 222 163
[12] Grotz C, Baumgartner M, Freitag K M, Baumer F and Nilges T2016 Inorg. Chem. 55 7764
[13] Gvozdetskyi V, et al.2019 Chem. Mater. 31 8695
[14] Ishida J, Iimura S and Hosono H2018 Inorg. Chem. 57 4997
[15] Stoyko S S, Khatun M and Mar A2012 Inorg. Chem. 51 9517
[16] Zhang T, et al.2019 Nature 566 475
[17] Tang F, Po H C, Vishwanath A and Wan X2019 Nature 566 486
[18] Vergniory M, et al.2019 Nature 566 480
[19] Wang Y Y, et al.2020 Phys. Rev. B 102 115122
[20] Tang F and Wan X2019 Frontiers of Physics 14 43603
[21] Toby B H2001 J. Appl. Crystallogr. 34 210
[22] Giannozzi P, et al.2009 J. Phys.: Condens. Matter 21 395502
[23] Giannozzi P, et al.2017 J. Phys.: Condens. Matter 29 465901
[24] Perdew J P, et al.2008 Phys. Rev. Lett. 100 136406
[25] Wolgast S, et al.2013 Phys. Rev. B 88 180405
[26] Ren Z, Taskin A, Sasaki S, Segawa K and Ando Y2010 Phys. Rev. B 82 241306
[27] Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P2010 Science 329 821
[28] Trang C X, et al.2016 Phys. Rev. B 93 165123
[29] Huang X, et al.2015 Phys. Rev. X 5 031023
[30] Du J, et al.2016 Science China Physics, Mechanics and Astronomy 59 657406
[31] Li Y, et al.2016 Phys. Rev. B 94 121115
[32] Li H, et al. 2016 Nat. Commun. 7 10301
[33] Ritchie L, et al.2003 Phys. Rev. B 68 104430
[34] Chiba H, Kikuchi M, Kusaba K, Muraoka Y and Syono Y1996 Solid State Commun. 99 499
[35] Von Molnar S and Methfessel S1967 J. Appl. Phys. 38 959
[36] Hu J, Rosenbaum T and Betts J2005 Phys. Rev. Lett. 95 186603
[37] Kawaji S1986 Surf. Sci. 170 682
[38] Lu H Z and Shen S Q 2014 Spintronics VII 9167: 263-273
[39] Wang Y and Santiago-Avilés J J2003 J. Appl. Phys. 94 1721
[40] Lu H Z and Shen S Q 2014 Phys. Rev. Lett. 112 146601
[41] Dai X, Du Z Z and Lu H Z 2017 Phys. Rev. Lett. 119 166601
[42] Breunig O, et al.2017 Nat. Commun. 8 15545
[43] Syers P and Paglione J2017 Phys. Rev. B 95 045123
[44] He J, et al.2017 Phys. Rev. B 95 195165
[45] Luo Y, et al.2015 Appl. Phys. Lett. 107 182411
[46] Zhao L, et al.2017 Phys. Rev. B 95 115119
[47] Witting I T, et al.2019 Adv. Electron. Mater. 5 1800904
[48] Mao J, et al.2019 Science 365 495
[1] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
[2] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[3] Thermoelectric generators and their applications: Progress, challenges, and future prospects
Nassima Radouane. Chin. Phys. B, 2023, 32(5): 057307.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[6] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[7] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[8] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[9] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[12] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[15] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
No Suggested Reading articles found!