CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural phase transition and transport properties in topological material candidate NaZn4As3 |
Qing-Xin Dong(董庆新)1,2, Bin-Bin Ruan(阮彬彬)1, Yi-Fei Huang(黄奕飞)1,2, Yi-Yan Wang(王义炎)4, Li-Bo Zhang(张黎博)1,2, Jian-Li Bai(白建利)1,2, Qiao-Yu Liu(刘乔宇)1,2, Jing-Wen Cheng(程靖雯)1,2, Zhi-An Ren(任治安)1,2,3, and Gen-Fu Chen(陈根富)1,2,3,† |
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China |
|
|
Abstract We report a comprehensive study on a layered-structure compound of NaZn4As3, which has been predicted to be an ideal topological semimetal (TSM) candidate. It is found that NaZn4As3 undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase. The electric resistivity exhibits a metal-to-insulator-like transition at around 100 K, and then develops a plateau at low temperature, which might be related to the protected topologically conducting surface states. Our first-principles calculation confirms further that NaZn4As3 is a topological insulator (TI) for both different phases rather than a previously proposed TSM. The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated. Furthermore, an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K. The large thermopower and moderate κ indicate that NaZn4As3 and /or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance.
|
Received: 02 February 2023
Revised: 02 February 2023
Accepted manuscript online: 23 February 2023
|
PACS:
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874417 and 12274440), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100), and the Fund from the Ministry of Science and Technology of China (Grant No. 2022YFA1403903). |
Corresponding Authors:
Gen-Fu Chen
E-mail: gfchen@iphy.ac.cn
|
Cite this article:
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富) Structural phase transition and transport properties in topological material candidate NaZn4As3 2023 Chin. Phys. B 32 066501
|
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H2008 J. Am. Chem. Soc. 130 3296 [2] Rotter M, Tegel M and Johrendt D2008 Phys. Rev. Lett. 101 107006 [3] Zhang H, et al.2008 J. Chem. Phys. 129 164713 [4] Sales B, Mandrus D and Williams R K1996 Science 272 1325 [5] Gascoin F, Ottensmann S, Stark D, Haïle S M and Snyder G J2005 Adv. Funct. Mater. 15 1860 [6] Zhang S, Yan Z, Li Y, Chen Z and Zeng H2015 Angew. Chem. 127 3155 [7] Liu H, et al.2014 ACS Nano 8 4033 [8] Jaiganesh G, Britto T M A, Eithiraj R and Kalpana G2008 J. Phys.: Condens. Matter 20 085220 [9] Kalarasse F and Bennecer B2006 J. Phys. Chem. Solids 67 846 [10] He H, Tyson C and Bobev S2011 Inorg. Chem. 50 8375 [11] Prots Y, Aydemir U, Öztürk S S and Somer M2007 Zeitschrift für Kristallographie-New Crystal Structures 222 163 [12] Grotz C, Baumgartner M, Freitag K M, Baumer F and Nilges T2016 Inorg. Chem. 55 7764 [13] Gvozdetskyi V, et al.2019 Chem. Mater. 31 8695 [14] Ishida J, Iimura S and Hosono H2018 Inorg. Chem. 57 4997 [15] Stoyko S S, Khatun M and Mar A2012 Inorg. Chem. 51 9517 [16] Zhang T, et al.2019 Nature 566 475 [17] Tang F, Po H C, Vishwanath A and Wan X2019 Nature 566 486 [18] Vergniory M, et al.2019 Nature 566 480 [19] Wang Y Y, et al.2020 Phys. Rev. B 102 115122 [20] Tang F and Wan X2019 Frontiers of Physics 14 43603 [21] Toby B H2001 J. Appl. Crystallogr. 34 210 [22] Giannozzi P, et al.2009 J. Phys.: Condens. Matter 21 395502 [23] Giannozzi P, et al.2017 J. Phys.: Condens. Matter 29 465901 [24] Perdew J P, et al.2008 Phys. Rev. Lett. 100 136406 [25] Wolgast S, et al.2013 Phys. Rev. B 88 180405 [26] Ren Z, Taskin A, Sasaki S, Segawa K and Ando Y2010 Phys. Rev. B 82 241306 [27] Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P2010 Science 329 821 [28] Trang C X, et al.2016 Phys. Rev. B 93 165123 [29] Huang X, et al.2015 Phys. Rev. X 5 031023 [30] Du J, et al.2016 Science China Physics, Mechanics and Astronomy 59 657406 [31] Li Y, et al.2016 Phys. Rev. B 94 121115 [32] Li H, et al. 2016 Nat. Commun. 7 10301 [33] Ritchie L, et al.2003 Phys. Rev. B 68 104430 [34] Chiba H, Kikuchi M, Kusaba K, Muraoka Y and Syono Y1996 Solid State Commun. 99 499 [35] Von Molnar S and Methfessel S1967 J. Appl. Phys. 38 959 [36] Hu J, Rosenbaum T and Betts J2005 Phys. Rev. Lett. 95 186603 [37] Kawaji S1986 Surf. Sci. 170 682 [38] Lu H Z and Shen S Q 2014 Spintronics VII 9167: 263-273 [39] Wang Y and Santiago-Avilés J J2003 J. Appl. Phys. 94 1721 [40] Lu H Z and Shen S Q 2014 Phys. Rev. Lett. 112 146601 [41] Dai X, Du Z Z and Lu H Z 2017 Phys. Rev. Lett. 119 166601 [42] Breunig O, et al.2017 Nat. Commun. 8 15545 [43] Syers P and Paglione J2017 Phys. Rev. B 95 045123 [44] He J, et al.2017 Phys. Rev. B 95 195165 [45] Luo Y, et al.2015 Appl. Phys. Lett. 107 182411 [46] Zhao L, et al.2017 Phys. Rev. B 95 115119 [47] Witting I T, et al.2019 Adv. Electron. Mater. 5 1800904 [48] Mao J, et al.2019 Science 365 495 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|