Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057506    DOI: 10.1088/1674-1056/acc2b3
RAPID COMMUNICATION Prev   Next  

Spin reorientation in easy-plane kagome ferromagnet Li9Cr3(P2O7)3(PO4)2

Yuanhao Dong(董元浩)1, Ying Fu(付盈)2, Yixuan Liu(刘以轩)3, Zhanyang Hao(郝占阳)3, Le Wang(王乐)1, Cai Liu(刘才)1, Ke Deng(邓可)1, and Jiawei Mei(梅佳伟)1,4,†
1 Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
2 School of Physics, Xi'an Jiaotong University, Xi'an 710049, China;
3 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
4 Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  We report the successful growth and characterization of Li$_9$Cr$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$ single crystal, and investigate its magnetic properties under external magnetic fields via magnetization and heat capacity measurements. Our study reveals that Li$_9$Cr$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$ is an easy-plane kagome ferromagnet with $S=3/2$, as evidenced by the Curie-Weiss temperature of 6 K which implies a ferromagnetic exchange coupling in the material. Under zero magnetic field, Li$_9$Cr$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$ undergoes a magnetic transition at $T_{\rm C} = 2.7$ K from a paramagnetic state to a ferromagnetically ordered state with the magnetic moment lying in the kagome plane. By applying a $c$-axis directional magnetic field to rotate the spin alignment from the kagome plane to the $c$-axis, we observe a reduction in the magnetic transition temperature as the field is increased. We construct a magnetic phase diagram as a function of temperature and magnetic field applied parallel to the $c$-axis of Li$_9$Cr$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$ and find that the phase boundary is linear over a certain temperature range. Regarding that theoretically, the field-induced phase transition of the spin reorientation in the easy-plane ferromagnet can be viewed as the ferromagnetic magnon Bose-Einstein condensation (BEC), the phase boundary scaling of field-induced ($B \parallel c$) magnetic transition in Li$_9$Cr$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$ can be described as the quasi-2D magnon BEC, which has been observed in other ferromagnetic materials such as K$_2$CuF$_4$.
Keywords:  kagome lattice      flux method      magnetic material      spin-3/2  
Received:  08 December 2022      Revised:  21 February 2023      Accepted manuscript online:  09 March 2023
PACS:  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  06.60.Ei (Sample preparation)  
  61.05.cp (X-ray diffraction)  
  67.85.Jk (Other Bose-Einstein condensation phenomena)  
Fund: Project supported by Shenzhen Fundamental Research Program (Grant No. JCYJ20220818100405013).
Corresponding Authors:  Jiawei Mei     E-mail:  meijw@sustech.edu.cn

Cite this article: 

Yuanhao Dong(董元浩), Ying Fu(付盈), Yixuan Liu(刘以轩), Zhanyang Hao(郝占阳), Le Wang(王乐), Cai Liu(刘才), Ke Deng(邓可), and Jiawei Mei(梅佳伟) Spin reorientation in easy-plane kagome ferromagnet Li9Cr3(P2O7)3(PO4)2 2023 Chin. Phys. B 32 057506

[1] Meschke V, Gorai P, Stevanovic V and Tober E S 2021 Chem. Mater. 33 4373
[2] Nytko E A, Helton J S, Müller P and Daniel G N 2008 J. Am. Chem. Soc. 130 2922
[3] Feng Z, Li Z, Meng X, Yi W, Wei Y, Zhang J, Wang Y C, Jiang W, Liu Z, Li S Y, Liu F, Luo J L, Li S L, Zheng G Q, Meng Z Y, Mei J W and Shi Y G 2017 Chin. Phys. Lett. 34 077502
[4] Okamoto Y, Nohara M, Aruga-Katori H and Takagi H 2007 Phys. Rev. Lett. 99 137207
[5] Poisson S, d'Yvoire F, Bretey E and Berthet P 1998 J. Solid State Chem. 138 32
[6] Gao H, Zhang S and Deng C 2015 Dalton Trans. 44 138
[7] Xu J, Zhao Y and Kuang Q 2011 J. Sol-Gel Sci. Technol. 59 521
[8] Kermarrec E, Kumar R, Bernard G, Henaff R, Mendels P, Bert F, Paulose P L, Hazra B K and Koteswararao B 2021 Phys. Rev. Lett. 127 157202
[9] Balasubramanian P, Mancini M, Geßwein H, Geiger D, Axmann P, Kaiser U and Mehrens M W 2018 ChemElectroChem 5 201
[10] Yao H, Chen D, Zhang J, Duan H, Chen M, Zhou Z Y, Zhao Y M, Kuang Q, Fan Q H and Dong Y Z 2021 J. Solid State Electrochem. 25 2267
[11] Onoda M and Takada S 2019 J. Phys. Soc. Jpn. 88 034709
[12] Onoda M and Takada S 2019 J. Phys. Soc. Jpn. 88 064003
[13] Onoda M and Takada S 2020 J. Phys. Soc. Jpn. 89 034002
[14] Onoda M and Takada S 2020 J. Phys. Soc. Jpn. 89 074002
[15] Syromyatnikov A V 2007 Phys. Rev. B 75 134421
[16] Satoshi S, Kurita N, Yamada M and Tanaka H 2017 Phys. Rev. B 95 174406
[17] Magar A, Somesh K, Singh V, Abraham J, Senyk Y, Alfonsov A, Büchner B, Kataev V, Tsirlin Aand Nath R 2022 Phys. Rev. Appl. 18 054076
[18] Capitelli F, Dridi N, Arbib E H, Valentini V and Mattei G 2007 Z. Kristallogr. 222 521
[19] Luo Y, Gu F, Shui M and Shu J 2019 Ionics 25 5689
[1] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[2] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[3] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[4] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[5] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[6] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[7] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[8] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[9] Metal-to-insulator transition in two-dimensional ferromagnetic monolayer induced by substrate
Can Qi(齐灿), Jun Hu(胡军). Chin. Phys. B, 2018, 27(7): 077106.
[10] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
[11] Serrated magnetic properties in metallic glass by thermal cycle
Myong-Chol Ri(李明哲), Sajad Sohrabi, Da-Wei Ding(丁大伟), Bang-Shao Dong(董帮少), Shao-Xiong Zhou(周少雄), Wei-Hua Wang(汪卫华). Chin. Phys. B, 2017, 26(6): 066101.
[12] Structure dependence of magnetic properties in yttrium iron garnet by metal-organic decomposition method
Yuan Liu(刘园), Xiang Wang(王翔), Jie Zhu(朱杰), Runsheng Huang(黄润生), Dongming Tang(唐东明). Chin. Phys. B, 2017, 26(5): 057501.
[13] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[14] Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-xMgxFe2O4 nanoparticle ferrites
R M Rosnan, Z Othaman, R Hussin, Ali A Ati, Alireza Samavati, Shadab Dabagh, Samad Zare. Chin. Phys. B, 2016, 25(4): 047501.
[15] Fabrication and magnetic properties of 4SC(NH2)2-Ni0.97Cu0.03Cl2 single crystals
Chen Li-Min (陈丽敏), Guo Ying (郭颖), Liu Xu-Guang (刘旭光), Xie Qi-Yun (解其云), Tao Zhi-Kuo (陶志阔), Chen Jing (谌静), Zhou Ling-Ling (周玲玲), Liu Chun-Sheng (刘春生). Chin. Phys. B, 2015, 24(12): 127503.
No Suggested Reading articles found!