All-microwave CZ gate based on fixed-frequency driven coupler
Wanpeng Gao(高万鹏)1,2, Xiaoliang He(何潇梁)1,2, Zhengqi Niu(牛铮琦)1,3, Daqiang Bao(包大强)1, Kuang Liu(刘匡)1, Junfeng Chen(陈俊锋)1,2, Zhen Wang(王镇)1,2,3, and Z. R. Lin(林志荣)1,2,†
1 State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 ShanghaiTech University, Shanghai 201210, China
Abstract High-quality entangling gates are crucial for scalable quantum information processing. Implementing all-microwave two-qubit gates on fixed-frequency transmons offers advantages in reducing wiring complexity, but the gate performance is often limited due to the residual interaction and the frequency crowding problem. Here, we introduce a novel scheme that enables a microwave drive-activated CZ gate compatible with the coupler structure to suppress the residual interaction. The microwave drive is applied to the coupler and the microwave drive frequency remains far detuned from the system's transition frequency to alleviate the frequency crowding problem. We model the gate process analytically and demonstrate a theoretical gate fidelity up to 99.9% numerically. Our scheme is compatible with current coupler-structure-based circuits, and insensitive to microwave crosstalk, showing a possible path for all-microwave quantum operations at scale.
Received: 23 January 2025
Revised: 14 February 2025
Accepted manuscript online: 17 February 2025
PACS:
03.67.Lx
(Quantum computation architectures and implementations)
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303030002), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0670000), and the National Key Research and Development Program of China (Grant No. 2023YFB4404904).
Corresponding Authors:
Z. R. Lin
E-mail: zrlin@mail.sim.ac.cn
Cite this article:
Wanpeng Gao(高万鹏), Xiaoliang He(何潇梁), Zhengqi Niu(牛铮琦), Daqiang Bao(包大强), Kuang Liu(刘匡), Junfeng Chen(陈俊锋), Zhen Wang(王镇), and Z. R. Lin(林志荣) All-microwave CZ gate based on fixed-frequency driven coupler 2025 Chin. Phys. B 34 040304
[1] DiVincenzo D P 2000 Fortschritte der Physik 48 771 [2] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318 [3] Kwon S, Tomonaga A, Lakshmi Bhai G, Devitt S J and Tsai J S 2021 J. Appl. Phys. 129 041102 [4] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505 [5] Cao S, Wu B, Chen F, Gong M, Wu Y, Ye Y, Zha C, Qian H, Ying C, Guo S, Zhu Q, Huang H L, Zhao Y, Li S, Wang S, Yu J, Fan D, Wu D, Su H, Deng H, Rong H, Li Y, Zhang K, Chung T H, Liang F, Lin J, Xu Y, Sun L, Guo C, Li N, Huo Y H, Peng C Z, Lu C Y, Yuan X, Zhu X and Pan J W 2023 Nature 619 738 [6] Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang D W, Wang H and Zhu S Y 2019 Science 365 574 [7] Krinner S, Lacroix N, Remm A, Di Paolo A, Genois E, Leroux C, Hellings C, Lazar S, Swiadek F, Herrmann J, Norris G J, Andersen C K, Müller M, Blais A, Eichler C and Wallraff A 2022 Nature 605 669 [8] Bravyi S, Dial O, Gambetta J M, Gil D and Nazario Z 2022 J. Appl. Phys. 132 160902 [9] Reagor M, Osborn C B, Tezak N, et al. 2018 Science Advances 4 eaao3603 [10] Rigetti C and Devoret M 2010 Phys. Rev. B 81 134507 [11] Chow J M, Córcoles A D, Gambetta J M, Rigetti C, Johnson B R, Smolin J A, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2011 Phys. Rev. Lett. 107 080502 [12] Mitchell B K, Naik R K, Morvan A, Hashim A, Kreikebaum J M, Marinelli B, LavrijsenW, Nowrouzi K, Santiago D I and Siddiqi I 2021 Phys. Rev. Lett. 127 200502 [13] Noguchi A, Osada A, Masuda S, Kono S, Heya K, Wolski S P, Takahashi H, Sugiyama T, Lachance-Quirion D and Nakamura Y 2020 Phys. Rev. A 102 062408 [14] Sete E A, Didier N, Chen A Q, Kulshreshtha S, Manenti R and Poletto S 2021 Phys. Rev. Appl. 16 024050 [15] Krinner S, Kurpiers P, Royer B, Magnard P, Tsitsilin I, Besse J C, Remm A, Blais A and Wallraff A 2020 Phys. Rev. Appl. 14 044039 [16] Shirai S, Okubo Y, Matsuura K, Osada A, Nakamura Y and Noguchi A 2023 Phys. Rev. Lett. 130 260601 [17] Setiawan F, Groszkowski P and Clerk A A 2023 Phys. Rev. Appl. 19 034071 [18] Li S, Fan D, Gong M, Ye Y, Chen X, Wu Y, Guan H, Deng H, Rong H, Huang H, L et al. 2022 Chin. Phys. Lett. 39 030302 [19] Paik H, Mezzacapo A, Sandberg M, McClure D T, Abdo B, Córcoles A D, Dial O, Bogorin D F, Plourde B L T, Steffen M, Cross AW, Gambetta J M and Chow J M 2016 Phys. Rev. Lett. 117 250502 [20] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Applied 10 054062 [21] Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, et al. 2020 Phys. Rev. Lett. 125 240503 [22] Collodo M C, Herrmann J, Lacroix N, Andersen C K, Remm A, Lazar S, Besse J C, Walter T, Wallraff A and Eichler C 2020 Phys. Rev. Lett. 125 240502 [23] Xu H, Liu W, Li Z, Han J, Zhang J, Linghu K, Li Y, Chen M, Yang Z, Wang J, et al. 2021 Chin. Phys. B 30 044212 [24] Ye Y, Cao S, Wu Y, Chen X, Zhu Q, Li S, Chen F, Gong M, Zha C, Huang H L, et al. 2021 Chin. Phys. Lett. 38 100301 [25] Anandan J 1992 Nature 360 307 [26] Sjöqvist E 2015 International Journal of Quantum Chemistry 115 1311 [27] Lescanne R, Deléglise S, Albertinale E, Réglade U, Capelle T, Ivanov E, Jacqmin T, Leghtas Z and Flurin E 2020 Phys. Rev. X 10 021038 [28] Paolo A D, Leroux C, Hazard T M, Serniak K, Gustavsson S, Blais A and Oliver W D 2022 arXiv:2204.08098quant-ph] [29] Johansson J R, Nation P D and Nori F 2012 Computer Physics Communications 183 1760 [30] Johansson J, Nation P and Nori F 2013 Computer Physics Communications 184 1234 [31] Li R, Kubo K, Ho Y, Yan Z, Nakamura Y and Goto H 2024 Phys. Rev. X 14 041050 [32] Motzoi F, Gambetta J M, Rebentrost P and Wilhelm F K 2009 Phys. Rev. Lett. 103 110501 [33] Werninghaus M, Egger D J, Roy F, Machnes S,Wilhelm F K and Filipp S 2021 npj Quantum Information 7 14 [34] Schulte-Herbrüggen T, Glaser S J, Dirr G and Helmke U 2010 Reviews in Mathematical Physics 22 597 [35] Caneva T, Calarco T and Montangero S 2011 Phys. Rev. A 84 022326
Electric field dependence of spin qubit in a Si-MOS quantum dot Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(6): 060312.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.