Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040304    DOI: 10.1088/1674-1056/adb68a
RAPID COMMUNICATION Prev   Next  

All-microwave CZ gate based on fixed-frequency driven coupler

Wanpeng Gao(高万鹏)1,2, Xiaoliang He(何潇梁)1,2, Zhengqi Niu(牛铮琦)1,3, Daqiang Bao(包大强)1, Kuang Liu(刘匡)1, Junfeng Chen(陈俊锋)1,2, Zhen Wang(王镇)1,2,3, and Z. R. Lin(林志荣)1,2,†
1 State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 ShanghaiTech University, Shanghai 201210, China
Abstract  High-quality entangling gates are crucial for scalable quantum information processing. Implementing all-microwave two-qubit gates on fixed-frequency transmons offers advantages in reducing wiring complexity, but the gate performance is often limited due to the residual ZZ interaction and the frequency crowding problem. Here, we introduce a novel scheme that enables a microwave drive-activated CZ gate compatible with the coupler structure to suppress the residual ZZ interaction. The microwave drive is applied to the coupler and the microwave drive frequency remains far detuned from the system's transition frequency to alleviate the frequency crowding problem. We model the gate process analytically and demonstrate a theoretical gate fidelity up to 99.9% numerically. Our scheme is compatible with current coupler-structure-based circuits, and insensitive to microwave crosstalk, showing a possible path for all-microwave quantum operations at scale.
Keywords:  quantum computing      superconducting qubit      two-qubit gate  
Received:  23 January 2025      Revised:  14 February 2025      Accepted manuscript online:  17 February 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303030002), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0670000), and the National Key Research and Development Program of China (Grant No. 2023YFB4404904).
Corresponding Authors:  Z. R. Lin     E-mail:  zrlin@mail.sim.ac.cn

Cite this article: 

Wanpeng Gao(高万鹏), Xiaoliang He(何潇梁), Zhengqi Niu(牛铮琦), Daqiang Bao(包大强), Kuang Liu(刘匡), Junfeng Chen(陈俊锋), Zhen Wang(王镇), and Z. R. Lin(林志荣) All-microwave CZ gate based on fixed-frequency driven coupler 2025 Chin. Phys. B 34 040304

[1] DiVincenzo D P 2000 Fortschritte der Physik 48 771
[2] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[3] Kwon S, Tomonaga A, Lakshmi Bhai G, Devitt S J and Tsai J S 2021 J. Appl. Phys. 129 041102
[4] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[5] Cao S, Wu B, Chen F, Gong M, Wu Y, Ye Y, Zha C, Qian H, Ying C, Guo S, Zhu Q, Huang H L, Zhao Y, Li S, Wang S, Yu J, Fan D, Wu D, Su H, Deng H, Rong H, Li Y, Zhang K, Chung T H, Liang F, Lin J, Xu Y, Sun L, Guo C, Li N, Huo Y H, Peng C Z, Lu C Y, Yuan X, Zhu X and Pan J W 2023 Nature 619 738
[6] Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang D W, Wang H and Zhu S Y 2019 Science 365 574
[7] Krinner S, Lacroix N, Remm A, Di Paolo A, Genois E, Leroux C, Hellings C, Lazar S, Swiadek F, Herrmann J, Norris G J, Andersen C K, Müller M, Blais A, Eichler C and Wallraff A 2022 Nature 605 669
[8] Bravyi S, Dial O, Gambetta J M, Gil D and Nazario Z 2022 J. Appl. Phys. 132 160902
[9] Reagor M, Osborn C B, Tezak N, et al. 2018 Science Advances 4 eaao3603
[10] Rigetti C and Devoret M 2010 Phys. Rev. B 81 134507
[11] Chow J M, Córcoles A D, Gambetta J M, Rigetti C, Johnson B R, Smolin J A, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2011 Phys. Rev. Lett. 107 080502
[12] Mitchell B K, Naik R K, Morvan A, Hashim A, Kreikebaum J M, Marinelli B, LavrijsenW, Nowrouzi K, Santiago D I and Siddiqi I 2021 Phys. Rev. Lett. 127 200502
[13] Noguchi A, Osada A, Masuda S, Kono S, Heya K, Wolski S P, Takahashi H, Sugiyama T, Lachance-Quirion D and Nakamura Y 2020 Phys. Rev. A 102 062408
[14] Sete E A, Didier N, Chen A Q, Kulshreshtha S, Manenti R and Poletto S 2021 Phys. Rev. Appl. 16 024050
[15] Krinner S, Kurpiers P, Royer B, Magnard P, Tsitsilin I, Besse J C, Remm A, Blais A and Wallraff A 2020 Phys. Rev. Appl. 14 044039
[16] Shirai S, Okubo Y, Matsuura K, Osada A, Nakamura Y and Noguchi A 2023 Phys. Rev. Lett. 130 260601
[17] Setiawan F, Groszkowski P and Clerk A A 2023 Phys. Rev. Appl. 19 034071
[18] Li S, Fan D, Gong M, Ye Y, Chen X, Wu Y, Guan H, Deng H, Rong H, Huang H, L et al. 2022 Chin. Phys. Lett. 39 030302
[19] Paik H, Mezzacapo A, Sandberg M, McClure D T, Abdo B, Córcoles A D, Dial O, Bogorin D F, Plourde B L T, Steffen M, Cross AW, Gambetta J M and Chow J M 2016 Phys. Rev. Lett. 117 250502
[20] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Applied 10 054062
[21] Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, et al. 2020 Phys. Rev. Lett. 125 240503
[22] Collodo M C, Herrmann J, Lacroix N, Andersen C K, Remm A, Lazar S, Besse J C, Walter T, Wallraff A and Eichler C 2020 Phys. Rev. Lett. 125 240502
[23] Xu H, Liu W, Li Z, Han J, Zhang J, Linghu K, Li Y, Chen M, Yang Z, Wang J, et al. 2021 Chin. Phys. B 30 044212
[24] Ye Y, Cao S, Wu Y, Chen X, Zhu Q, Li S, Chen F, Gong M, Zha C, Huang H L, et al. 2021 Chin. Phys. Lett. 38 100301
[25] Anandan J 1992 Nature 360 307
[26] Sjöqvist E 2015 International Journal of Quantum Chemistry 115 1311
[27] Lescanne R, Deléglise S, Albertinale E, Réglade U, Capelle T, Ivanov E, Jacqmin T, Leghtas Z and Flurin E 2020 Phys. Rev. X 10 021038
[28] Paolo A D, Leroux C, Hazard T M, Serniak K, Gustavsson S, Blais A and Oliver W D 2022 arXiv:2204.08098quant-ph]
[29] Johansson J R, Nation P D and Nori F 2012 Computer Physics Communications 183 1760
[30] Johansson J, Nation P and Nori F 2013 Computer Physics Communications 184 1234
[31] Li R, Kubo K, Ho Y, Yan Z, Nakamura Y and Goto H 2024 Phys. Rev. X 14 041050
[32] Motzoi F, Gambetta J M, Rebentrost P and Wilhelm F K 2009 Phys. Rev. Lett. 103 110501
[33] Werninghaus M, Egger D J, Roy F, Machnes S,Wilhelm F K and Filipp S 2021 npj Quantum Information 7 14
[34] Schulte-Herbrüggen T, Glaser S J, Dirr G and Helmke U 2010 Reviews in Mathematical Physics 22 597
[35] Caneva T, Calarco T and Montangero S 2011 Phys. Rev. A 84 022326
[1] Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
Zilu Chen(陈子禄), Zhijin Guan(管致锦), Shuxian Zhao(赵书娴), and Xueyun Cheng(程学云). Chin. Phys. B, 2025, 34(5): 050305.
[2] RF detection of split-gate modes in Si-MOS quantum dots
Ning Chu(楚凝), Sheng-Kai Zhu(祝圣凯), Ao-Ran Li(李傲然), Chu Wang(王储), Wei-Zhu Liao(廖伟筑), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(4): 040303.
[3] Robust quantum gate optimization with first-order derivatives of ion-phonon and ion-ion couplings in trapped ions
Jing-Bo Wang(汪景波). Chin. Phys. B, 2025, 34(4): 040302.
[4] Delayed-measurement one-way quantum computing on cloud quantum computer
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁). Chin. Phys. B, 2024, 33(9): 090304.
[5] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[6] Development of 400-μW cryogen-free dilution refrigerators for quantum experiments
Xiang Guan(关翔), Jie Fan(樊洁), Yong-Bo Bian(边勇波), Zhi-Gang Cheng(程智刚), and Zhong-Qing Ji(姬忠庆). Chin. Phys. B, 2024, 33(7): 070701.
[7] Electric field dependence of spin qubit in a Si-MOS quantum dot
Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(6): 060312.
[8] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[9] Automatic architecture design for distributed quantum computing
Ting-Yu Luo(骆挺宇), Yu-Zhen Zheng(郑宇真), Xiang Fu(付祥), and Yu-Xin Deng(邓玉欣). Chin. Phys. B, 2024, 33(12): 120302.
[10] M2CS: A microwave measurement and control system for large-scale superconducting quantum processors
Jiawei Zhang(张家蔚), Xuandong Sun(孙炫东), Zechen Guo(郭泽臣), Yuefeng Yuan(袁跃峰), Yubin Zhang(张玉斌), Ji Chu(储继), Wenhui Huang(黄文辉), Yongqi Liang(梁咏棋), Jiawei Qiu(邱嘉威), Daxiong Sun(孙大雄), Ziyu Tao(陶子予), Jiajian Zhang(张家健), Weijie Guo(郭伟杰), Ji Jiang(蒋骥), Xiayu Linpeng(林彭夏雨), Yang Liu(刘阳), Wenhui Ren(任文慧), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2024, 33(12): 120309.
[11] Diagnosing quantum crosstalk in superconducting quantum chips by using out-of-time-order correlators
Yujia Zhang(张宇佳), Yu Zhang(张钰), Shaoxiong Li(李邵雄), Wen Zheng(郑文), and Yang Yu(于扬). Chin. Phys. B, 2024, 33(11): 110306.
[12] Calibration and cancellation of microwave crosstalk in superconducting circuits
Haisheng Yan(严海生), Shoukuan Zhao(赵寿宽), Zhongcheng Xiang(相忠诚), Ziting Wang(王子婷), Zhaohua Yang(杨钊华), Kai Xu(许凯), Ye Tian(田野), Haifeng Yu(于海峰), Dongning Zheng(郑东宁), Heng Fan(范桁), and Shiping Zhao(赵士平). Chin. Phys. B, 2023, 32(9): 094203.
[13] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[14] Energy shift and subharmonics induced by nonlinearity in a quantum dot system
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(6): 060303.
[15] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
No Suggested Reading articles found!