Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050311    DOI: 10.1088/1674-1056/adcb26
Special Issue: SPECIAL TOPIC — Computational programs in complex systems
SPECIAL TOPIC — Computational programs in complex systems Prev   Next  

Planar: A software for exact decoding quantum error correction codes with planar structure

Dongyang Feng(冯东阳)1,2,3,†, Hanyan Cao(曹涵彦)2,3,†, and Pan Zhang(张潘)1,2,‡
1 School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China;
2 CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Quantum error correction is essential for realizing fault-tolerant quantum computing, where both the efficiency and accuracy of the decoding algorithms play critical roles. In this work, we introduce the implementation of the Planar algorithm, a software framework designed for fast and exact decoding of quantum codes with a planar structure. The algorithm first converts the optimal decoding of quantum codes into a partition function computation problem of an Ising spin glass model. Then it utilizes the exact Kac-Ward formula to solve it. In this way, Planar offers the exact maximum likelihood decoding in polynomial complexity for quantum codes with a planar structure, including the surface code with independent code-capacity noise and the quantum repetition code with circuit-level noise. Unlike traditional minimum-weight decoders such as minimum-weight perfect matching (MWPM), Planar achieves theoretically optimal performance while maintaining polynomial-time efficiency. In addition, to demonstrate its capabilities, we exemplify the implementation using the rotated surface code, a commonly used quantum error correction code with a planar structure, and show that Planar achieves a threshold of approximately puc0.109 under the depolarizing error model, with a time complexity scaling of O(N0.69), where N is the number of spins in the Ising model.
Keywords:  quantum computing      quantum error correction      planar Ising model  
Received:  14 March 2025      Revised:  09 April 2025      Accepted manuscript online:  10 April 2025
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.50.+q (Lattice theory and statistics)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12325501, 12047503, and 12247104) and the Chinese Academy of Sciences (Grant No. ZDRW-XX-2022-3-02). P. Z. is partially supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301900).
Corresponding Authors:  Pan Zhang     E-mail:  panzhang@itp.ac.cn

Cite this article: 

Dongyang Feng(冯东阳), Hanyan Cao(曹涵彦), and Pan Zhang(张潘) Planar: A software for exact decoding quantum error correction codes with planar structure 2025 Chin. Phys. B 34 050311

[1] Google Quantum AI 2021 Nature 595 383
[2] Google Quantum AI and Collaborators 2024 Nature 638 920
[3] Google Quantum AI 2023 Nature 614 676
[4] Bluvstein D, Evered S J, Geim A A, Li S H, Zhou H, Manovitz T, Ebadi S, Cain M, Kalinowski M, Hangleiter D, et al. 2024 Nature 626 58
[5] Honciuc Menendez D, Ray A and Vasmer M 2024 Phys. Rev. A 109 062438
[6] Hong Y, Durso-Sabina E, Hayes D and Lucas A 2024 Phys. Rev. Lett. 133 180601
[7] Da Silva M, Ryan-Anderson C, Bello-Rivas J, Chernoguzov A, Dreiling J, Foltz C, Gaebler J, Gatterman T, Hayes D, Hewitt N, et al. 2024 arXiv preprint arXiv: 2404.02280
[8] Mayer K, Ryan-Anderson C, Brown N, Durso-Sabina E, Baldwin C H, Hayes D, Dreiling J M, Foltz C, Gaebler J P, Gatterman T M, et al. 2024 arXiv preprint arXiv: 2404.08616
[9] Ryan-Anderson C, Bohnet J G, Lee K, Gresh D, Hankin A, Gaebler J, Francois D, Chernoguzov A, Lucchetti D, Brown N C, et al. 2021 Phys. Rev. X 11 041058
[10] Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Phys. Rev. A 86 032324
[11] Campbell E T 2019 Quantum Science and Technology 4 025006
[12] Bonilla Ataides J P, Tuckett D K, Bartlett S D, Flammia S T and Brown B J 2021 Nat. Commun. 12 2172
[13] Hastings M B and Haah J 2021 Quantum 5 564
[14] Fowler A G 2011 Phys. Rev. A 83 042310
[15] Bravyi S, Cross A W, Gambetta J M, Maslov D, Rall P and Yoder T J 2024 Nature 627 778
[16] Gottesman D 1997 Stabilizer codes and quantum error correction (California Institute of Technology)
[17] Higgott O 2022 ACM Transactions on Quantum Computing 3 1
[18] Fowler A G 2013 arXiv preprint arXiv: 1310.0863
[19] Higgott O, Bohdanowicz T C, Kubica A, Flammia S T and Campbell E T 2023 Phys. Rev. X 13 031007
[20] Kolmogorov V 2009 Mathematical Programming Computation 1 43
[21] Liyanage N, Wu Y, Deters A and Zhong L 2023 Scalable quantum error correction for surface codes using fpga 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) Vol. 01 pp. 916-927
[22] Bohdanowicz T C, Crosson E, Nirkhe C and Yuen H 2019 Tensor networks for exact and approximate maximum likelihood decoding Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (Phoenix AZ USA: ACM) pp. 481-490
[23] Piveteau C, Chubb C T and Renes J M 2024 PRX Quantum 5 040303
[24] Bravyi S, Suchara M and Vargo A 2014 Phys. Rev. A 90 032326
[25] Cao H, Zhao S, Feng D, Shen Z, Yan H, Su T, Sun W, Xu H, Pan F, Yu H, et al. 2025 arXiv preprint arXiv: 2501.03582
[26] https://github.com/CHY-i/planar
[27] Cao H, Pan F, Wang Y and Zhang P 2023 arXiv preprint arXiv: 2307.09025
[28] Chubb C T and Flammia S T 2021 Annales de l’Institut Henri Poincaré D 8 269
[29] Bombin H, Andrist R S, Ohzeki M, Katzgraber H G and Martin- Delgado M A 2012 Phys. Rev. X 2 021004
[30] Kac M and Ward J C 1952 Phys. Rev. 88 1332
[31] Roffe J, White D R, Burton S and Campbell E 2020 Phys. Rev. Res. 2 043423
[1] A graph neural network and multi-task learning-based decoding algorithm for enhancing XZZX code stability in biased noise
Bo Xiao(肖博), Zai-Xu Fan(范在旭), Hui-Qian Sun(孙汇倩), Hong-Yang Ma(马鸿洋), and Xing-Kui Fan(范兴奎). Chin. Phys. B, 2025, 34(5): 050306.
[2] Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
Zilu Chen(陈子禄), Zhijin Guan(管致锦), Shuxian Zhao(赵书娴), and Xueyun Cheng(程学云). Chin. Phys. B, 2025, 34(5): 050305.
[3] RF detection of split-gate modes in Si-MOS quantum dots
Ning Chu(楚凝), Sheng-Kai Zhu(祝圣凯), Ao-Ran Li(李傲然), Chu Wang(王储), Wei-Zhu Liao(廖伟筑), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(4): 040303.
[4] All-microwave CZ gate based on fixed-frequency driven coupler
Wanpeng Gao(高万鹏), Xiaoliang He(何潇梁), Zhengqi Niu(牛铮琦), Daqiang Bao(包大强), Kuang Liu(刘匡), Junfeng Chen(陈俊锋), Zhen Wang(王镇), and Z. R. Lin(林志荣). Chin. Phys. B, 2025, 34(4): 040304.
[5] Robust quantum gate optimization with first-order derivatives of ion-phonon and ion-ion couplings in trapped ions
Jing-Bo Wang(汪景波). Chin. Phys. B, 2025, 34(4): 040302.
[6] Global receptive field transformer decoder method on quantum surface code data and syndrome error correction
Ao-Qing Li(李熬庆), Ce-Wen Tian(田策文), Xiao-Xuan Xu(徐晓璇), Hong-Yang Ma(马鸿洋), and Jun-Qing Liang(梁俊卿). Chin. Phys. B, 2025, 34(3): 030306.
[7] Quantum decoder design for subsystem surface code based on multi-head graph attention and edge weighting
Nai-Hua Ji(纪乃华), Hui-Qian Sun(孙汇倩), Bo Xiao(肖博), Ping-Li Song(宋平俐), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(2): 020309.
[8] Delayed-measurement one-way quantum computing on cloud quantum computer
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁). Chin. Phys. B, 2024, 33(9): 090304.
[9] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[10] Development of 400-μW cryogen-free dilution refrigerators for quantum experiments
Xiang Guan(关翔), Jie Fan(樊洁), Yong-Bo Bian(边勇波), Zhi-Gang Cheng(程智刚), and Zhong-Qing Ji(姬忠庆). Chin. Phys. B, 2024, 33(7): 070701.
[11] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[12] Decoding topological XYZ2 codes with reinforcement learning based on attention mechanisms
Qing-Hui Chen(陈庆辉), Yu-Xin Ji(姬宇欣), Ke-Han Wang(王柯涵), Hong-Yang Ma(马鸿洋), and Nai-Hua Ji(纪乃华). Chin. Phys. B, 2024, 33(6): 060314.
[13] Electric field dependence of spin qubit in a Si-MOS quantum dot
Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(6): 060312.
[14] Recurrent neural network decoding of rotated surface codes based on distributed strategy
Fan Li(李帆), Ao-Qing Li(李熬庆), Qi-Di Gan(甘启迪), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040307.
[15] Automatic architecture design for distributed quantum computing
Ting-Yu Luo(骆挺宇), Yu-Zhen Zheng(郑宇真), Xiang Fu(付祥), and Yu-Xin Deng(邓玉欣). Chin. Phys. B, 2024, 33(12): 120302.
No Suggested Reading articles found!