Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080302    DOI: 10.1088/1674-1056/ad50be
Special Issue: SPECIAL TOPIC — Quantum computing and quantum sensing
SPECIAL TOPIC — Quantum computing and quantum sensing Prev   Next  

A family of quantum von Neumann architecture

Dong-Sheng Wang(王东升)†
CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We develop universal quantum computing models that form a family of quantum von Neumann architectures, with modular units of memory, control, CPU, and internet, besides input and output. This family contains three generations characterized by dynamical quantum resource theory, and it also circumvents no-go theorems on quantum programming and control. Besides universality, such a family satisfies other desirable engineering requirements on system and algorithm design, such as modularity and programmability, hence serves as a unique approach to building universal quantum computers.
Keywords:  von Neumann architecture      quantum resource theory      quantum computing  
Received:  18 January 2024      Revised:  21 May 2024      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12047503 and 12105343).
Corresponding Authors:  Dong-Sheng Wang     E-mail:  wds@itp.ac.cn

Cite this article: 

Dong-Sheng Wang(王东升) A family of quantum von Neumann architecture 2024 Chin. Phys. B 33 080302

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Nielsen M A and Chuang I L 1997 Phys. Rev. Lett. 79 321
[3] Araujo M, Feix A, Costa F and Brukner C 2014 New J. Phys. 16 093026
[4] Vanrietvelde A and Chiribella G 2021 Quant. Infor. Comput. 21 1320
[5] Yang Y, Renner R and Chiribella G 2020 Phys. Rev. Lett. 125 210501
[6] Wang D S 2020 Phys. Rev. A 101 052311
[7] Wang D S 2022 Commun. Theor. Phys. 74 095103
[8] Liu Y T, Wang K, Liu Y D and Wang D S 2023 Entropy 25 1187
[9] Rosset D, Buscemi F and Liang Y C 2018 Phys. Rev. X 8 021033
[10] Li L, Hall M J W and Wiseman H M 2018 Physics Reports 759 1
[11] Huang H Y, Kueng R and Preskill J 2021 Phys. Rev. Lett. 126 190505
[12] Wang D S 2021 Quantum Engineering 2 85
[13] Wang D S 2023 Commun. Theor. Phys. 75 125101
[14] Choi M D 1975 Linear Algebra Appl. 10 285
[15] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[16] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[17] Chitambar E and Gour G 2019 Rev. Mod. Phys. 91 025001
[18] von Neumann J 1993 IEEE Annals of the History of Computing 15 27
[19] Bisio A, Chiribella G, D’Ariano G M, Facchini S and Perinotti P 2010 Phys. Rev. A 81 032324
[20] Chiribella G, D’Ariano G M and Perinotti P 2008 Europhys. Lett. 83 30004
[21] Chiribella G, D’Ariano G M and Perinotti P 2009 Phys. Rev. A 80 022339
[22] Horodecki M, Shor P and Ruskai M B 2003 Rev. Math. Phys. 15 629
[23] Gottesman D and Chuang I L 1999 Nature 402 390
[24] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[25] Yang Y, Mo Y, Renes J M, Chiribella G and Woods M P 2022 Phys. Rev. Res. 4 023107
[26] Wang D S, Wang Y J, Cao N, Zeng B and Laflamme R 2022 New J. Phys. 24 023019
[27] Martyn J M, Rossi Z M, Tan A K and Chuang I L 2021 PRX Quantum 2 040203
[28] Levine H, Keesling A, Semeghini G, Omran A, Wang T T, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H and Lukin M D 2019 Phys. Rev. Lett. 123 170503
[29] Khazali M and Mølmer K 2020 Phys. Rev. X 10 021054
[30] Kim Y, Morvan A, Nguyen L B, Naik R K, Jünger C, Chen L, Kreikebaum J M, Santiago D I and Siddiqi I 2022 Nat. Phys. 18 783
[31] Harris D M and Harris S L 2013 Digital Design and Computer Architecture (Elsevier)
[1] Development of 400-μW cryogen-free dilution refrigerators for quantum experiments
Xiang Guan(关翔), Jie Fan(樊洁), Yong-Bo Bian(边勇波), Zhi-Gang Cheng(程智刚), and Zhong-Qing Ji(姬忠庆). Chin. Phys. B, 2024, 33(7): 070701.
[2] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[3] Electric field dependence of spin qubit in a Si-MOS quantum dot
Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(6): 060312.
[4] Energy shift and subharmonics induced by nonlinearity in a quantum dot system
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(6): 060303.
[5] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[6] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[7] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[8] Approximate error correction scheme for three-dimensional surface codes based reinforcement learning
Ying-Jie Qu(曲英杰), Zhao Chen(陈钊), Wei-Jie Wang(王伟杰), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2023, 32(10): 100307.
[9] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[10] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[11] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[12] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[13] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[14] Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(12): 128502.
[15] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
No Suggested Reading articles found!