|
|
Energy shift and subharmonics induced by nonlinearity in a quantum dot system |
Yuan Zhou(周圆)1,2, Gang Cao(曹刚)1,2, Hai-Ou Li(李海欧)1,2,†, and Guo-Ping Guo(郭国平)1,2,3 |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Origin Quantum Computing Company Limited, Hefei 230026, China |
|
|
Abstract The presence of anticrossings induced by coupling between two states causes curvature in energy levels, yielding a nonlinearity in the quantum system. When the system is driven back and forth along the bending energy levels, subharmonic transitions and energy shifts can be observed, which would cause a significant influence as the system is applied to quantum computing. In this paper, we study a longitudinally driven singlet-triplet (ST) system in a double quantum dot (DQD) system, and illustrate the consequences of nonlinearity by driving the system close to the anticrossings. We provide a straightforward theory to quantitatively describe the energy shift and subharmonics caused by nonlinearity, and find good agreement between our theoretical result and the numerical simulation. Our results reveal the existence of nonlinearity in the vicinity of anticrossings and provide a direct way of analytically assessing its impact, which can be applied to other quantum systems without excessive labor.
|
Received: 13 February 2023
Revised: 08 March 2023
Accepted manuscript online: 17 March 2023
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
68.65.Hb
|
(Quantum dots (patterned in quantum wells))
|
|
78.47.jh
|
(Coherent nonlinear optical spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074368, 92165207, 12034018 and 92265113), the Anhui Province Natural Science Foundation (Grant No. 2108085J03), and the USTC Tang Scholarship. |
Corresponding Authors:
Hai-Ou Li
E-mail: haiouli@ustc.edu.cn
|
Cite this article:
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平) Energy shift and subharmonics induced by nonlinearity in a quantum dot system 2023 Chin. Phys. B 32 060303
|
[1] Scully M O and Zubairy M S1997 Quantum Optics (Cambridge: Cambridge University Press) [2] Boyd R2003 Nonlinear Optics (Elsevier Inc.) [3] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D2019 Appl. Phys. Rev. 6 021318 [4] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A2010 Phys. Rev. Lett. 105 097401 [5] Maier S A and Atwater H A2005 J. Appl. Phys. 98 011101 [6] Kauranen M and Zayats A2012 Nat. Photonics 6 737 [7] Kacem N, Hentz S, Pinto D, Reig B and Nguyen V2009 Nanotechnology 20 275501 [8] Su Z J, Ying Y, Song X X, Zhang Z Z, Zhang Q H, Cao G, Li H O, Guo G C and Guo G P2021 Nanotechnology 32 155203 [9] Bachtold A, Moser J and Dykman M2022 Rev. Mod. Phys. 94 045005 [10] Zhou C, Wang L, Tu T, Han T Y, Li H O and Guo G P2013 Chin. Phys. Lett. 30 050301 [11] Chen B, Wang B, Cao G, Li H, Xiao M and Guo G2017 Sci. Bull. 62 712 [12] Zhang X, Li H O, Wang K, Cao G, Xiao M and Guo G P2018 Chin. Phys. B 27 020305 [13] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P2019 Natl. Sci. Rev. 6 32 [14] Wang K, Li H O, Xiao M, Cao G and Guo G P2018 Chin. Phys. B 27 090308 [15] Xu Y Q, Gu S S, Lin T, Wang B C, Li H O, Cao G and Guo G P2023 Sci. China: Phys., Mech. Astron. 66 237301 [16] Laird E A, Barthel C, Rashba E I, Marcus C M, Hanson M P and Gossard A C2009 Semicond. Sci. Technol. 24 064004 [17] Schroer M D, Petersson K D, Jung M and Petta J R2011 Phys. Rev. Lett. 107 176811 [18] Stehlik J, Schroer M D, Maialle M Z, Degani M H and Petta J R2014 Phys. Rev. Lett. 112 227601 [19] Scarlino P, Kawakami E, Ward D R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M2015 Phys. Rev. Lett. 115 106802 [20] Forster F, Mühlbacher M, Schuh D, Wegscheider W and Ludwig S2015 Phys. Rev. B 91 195417 [21] De A, Pryor C E and Flatté M E2009 Phys. Rev. Lett. 102 017603 [22] Pingenot J, Pryor C E and Flatté M E2011 Phys. Rev. B 84 195403 [23] Scarlino P, Kawakami E, Jullien T, Ward D R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M2017 Phys. Rev. B 95 165429 [24] Rashba E I2011 Phys. Rev. B 84 241305 [25] Danon J and Rudner M S2014 Phys. Rev. Lett. 113 247002 [26] Romhányi J, Burkard G and Pályi A2015 Phys. Rev. B 92 054422 [27] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S2018 Nat. Nanotechnol. 13 102 [28] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C2005 Science 309 2180 [29] Hendrickx N W, Franke D P, Sammak A, Scappucci G and Veldhorst M2020 Nature 577 487 [30] Yang C H, Leon R C C, Hwang J C C, Saraiva A, Tanttu T, Huang W, Camirand L J, Chan K W, Tan K Y, Hudson F E, Itoh K M, Morello A, Pioro-Ladriére M, Laucht A and Dzurak A S2020 Nature 580 350 [31] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E and Petta J R2022 Sci. Adv. 8 abn5130 [32] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M2022 Nature 601 343 [33] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G and Tarucha S2022 Nature 601 338 [34] Bloch F and Siegert A1940 Phys. Rev. 57 522 [35] Zhang T, Liu H, Gao F, Xu G, Wang K, Zhang X, Cao G, Wang T, Zhang J, Hu X, Li H O and Guo G P2021 Nano Lett. 21 3835 [36] Liu H, Zhang T, Wang K, Gao F, Xu G, Zhang X, Li S X, Cao G, Wang T, Zhang J, Hu X, Li H O and Guo G P2022 Phys. Rev. Appl. 17 044052 [37] Xu G, Li Y, Gao F, Li H O, Liu H, Wang K, Cao G, Wang T, Zhang J J, Guo G C and Guo G P2020 New J. Phys. 22 083068 [38] Winkler R2003 Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems vol. 191 (Heidelberg: Springer Berlin) [39] Bravyi S, DiVincenzo D P and Loss D2011 Ann. Phys. 326 2793 [40] Rahav S, Gilary I and Fishman S2003 Phys. Rev. A 68 013820 [41] Goldman N and Dalibard J2014 Phys. Rev. X 4 031027 [42] Zhou Y, Gu S, Wang K, Cao G, Hu X, Gong M, Guo G C, Li H O and Guo G P2023 Phys. Rev. Appl. 19 044053 [43] Shirley J H1965 Phys. Rev. 138 B979 [44] Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G and Petta J R2018 Science 359 439 [45] Petersson K D, Petta J R, Lu H and Gossard A C2010 Phys. Rev. Lett. 105 246804 [46] Dial O E, Shulman M D, Harvey S P, Bluhm H, Umansky V and Yacoby A2013 Phys. Rev. Lett. 110 146804 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|