Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060310    DOI: 10.1088/1674-1056/ad342e
GENERAL Prev   Next  

Design of a novel hybrid quantum deep neural network in INEQR images classification

Shuang Wang(王爽)1, Ke-Han Wang(王柯涵)2, Tao Cheng(程涛)1, Run-Sheng Zhao(赵润盛)2, Hong-Yang Ma(马鸿洋)2, and Shuai Guo(郭帅)2,†
1 School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China;
2 School of Sciences, Qingdao University of Technology, Qingdao 266033, China
Abstract  We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network (HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation (INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST (Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds $98%$. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network.
Keywords:  quantum computing      image classification      quantum-classical hybrid neural network      quantum image representation      interpolation  
Received:  16 January 2024      Revised:  23 February 2024      Accepted manuscript online:  15 March 2024
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF049) and the Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001).
Corresponding Authors:  Shuai Guo     E-mail:  guoshuai@qut.edu.cn

Cite this article: 

Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅) Design of a novel hybrid quantum deep neural network in INEQR images classification 2024 Chin. Phys. B 33 060310

[1] DiVincenzo D P 1995 Science 270 255
[2] Steane A 1998 Rep. Prog. Phys. 270 117
[3] Caraiman S and Manta V I 2015 Quantum Inf. Process. 14 1693
[4] Nagy M and Akl S G 2006 Int. J. Parallel, Emerg. Distrib. Systems 21 1
[5] Preskill J 2018 Quantum 2 79
[6] Lau J, Wei Z, Lim K H, Shrotriya H and Kwek L C 2022 AAPPS Bull. 32 27
[7] Cerezo M, Sharma K, Arrasmith A and Coles P J 2022 npj Quantum Inf. 8 113
[8] Cerezo M, Arrasmith A, Babbush R, Benjamin S C, Endo S, Fujii K, McClean J R, Mitarai K, Yuan X, Cincio L and Coles P J 2021 Nat. Rev. Phys. 3 625
[9] Benedetti M, Lloyd E, Sack S and Fiorentini M 2019 Quantum Sci. Technol. 4 043001
[10] Beer K, Bondarenko D, Farrelly T, Osborne T J, Salzmann R, Scheiermann D and Wolf R 2020 Nat. Commun. 11 808
[11] Wei S J, Chen Y H, Zhou Z R and Long G L 2022 AAPPS Bull. 32 2
[12] Farhi E, Goldstone J and Gutmann S 2014 arXiv:1411.4028 [quant-ph]
[13] Lin J, Zhang D B, Zhang S, Li T, Wang X and Bao W S 2020 Phys. Lett. A 384 126590
[14] Arthur D 2022 arXiv:2201.01820[cs.LG]
[15] Fan F, Shi Y, Guggemos T, et al. 2023 IEEE Transactions on Neural Networks and Learning Systems p. 1
[16] Liu J, Lim K H, Wood K L, et al. 2021 Sci. China Phys. Mech. Astron. 64 290311
[17] Pal P, Bhattacharyya S, Platos J and Snasel V 2023 Int. J. Hybrid Intellig. 2 102
[18] Gawron P and Lewiński S 2020 IEEE International Geoscience and Remote Sensing Symposium September 26-October 2, 2020, Waikoloa, HI, USA, p. 3513
[19] Li Y C, Zhou R G, Xu R Q, Luo J and Hu W W 2020 Quantum Sci. Technol. 5 044003
[20] Shi J J, Chen S H, Chen T, Zhao T G, Tang J Q, Li Q, Yu C L and Shi H Y 2022 Quantum Inf. Process. 21 214
[21] Li W, Chu P C, Liu G Z, Tian Y B, Qiu T H and Wang S M 2022 Quantum Engineering 2022 5701479
[22] Mishra S and Tsai C Y 2022 14th International Conference on Computer and Automation Engineering (ICCAE) March 25-27, 2022, Brisbane, Australia p. 70
[23] Alam M, Kundu S, Topaloglu R O and Ghosh S 2022 International Conference on Computer Aided Design November 1-4, 2022, Munich, Germany, p. 70
[24] Zhao C and Gao X S 2021 Quantum Mach. Intell. 3 15
[25] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[26] Zhou R G, Tan C Y and Ian H 2017 Int. J. Theor. Phys. 56 1382
[27] Zhou R G and Tan C Y and Fan P 2017 Mod. Phys. Lett. B 31 1750184
[28] Chetia R, Boruah S M B and Sahu P P 2021 Quantum Inf. Process. 20 21
[29] Hao W T, Zhang T S, Chen X Y and Zhou X Y 2023 Signal Process. 205 108890
[30] Farhi E and Neven H 2018 arXiv:1802.06002 [quant-ph]
[31] Alrikabi H T H S, Aljazaery I A, Qateef J S, and Alaidi A H M and Roa’a M 2022 Int. J. Interactive Mobile Technol. 16 35
[32] Otgonbaatar S and Datcu M 2021 IEEE Geosci. Remote Sens. Lett. 19 1
[33] Li Y C, Zhou, R G, Xu R Q, Luo J and Hu W W 2020 Quantum Sci. Technol. 5 044003
[34] Le P Q, Dong F and Hirota K 2011 Quantum Inf. Process. 10 63
[35] Zhang Y, Lu K, Gao Y H and Wang M 2013 Quantum Inf. Process. 12 2833
[36] Kirkland E J 2010 Bilinear Interpolation. In: Advanced Computing in Electron Microscopy (Boston: Springer) p. 261
[37] Smith P R 1981 Ultramicroscopy 6 201
[38] Mastyło M 2013 J. Funct. Anal. 265 185
[39] Zhou R G, Hu W W, Luo G F, et al. 2018 Quamtum Inf. Process. 17 166
[40] Huang Y C and Chen X2015 Phys. Rev. B 91 195143
[41] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242
[42] Christol Y 2023 GitHub
[43] Sarıgül M, Ozyildirim B M and Avci M 2019 Neural Netw. 116 279
[1] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[2] Development of 400-μW cryogen-free dilution refrigerators for quantum experiments
Xiang Guan(关翔), Jie Fan(樊洁), Yong-Bo Bian(边勇波), Zhi-Gang Cheng(程智刚), and Zhong-Qing Ji(姬忠庆). Chin. Phys. B, 2024, 33(7): 070701.
[3] Electric field dependence of spin qubit in a Si-MOS quantum dot
Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(6): 060312.
[4] Integer multiple quantum image scaling based on NEQR and bicubic interpolation
Shuo Cai(蔡硕), Ri-Gui Zhou(周日贵), Jia Luo(罗佳), and Si-Zhe Chen(陈思哲). Chin. Phys. B, 2024, 33(4): 040302.
[5] Classification and structural characteristics of amorphous materials based on interpretable deep learning
Jiamei Cui(崔佳梅), Yunjie Li(李韵洁), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(9): 096101.
[6] Energy shift and subharmonics induced by nonlinearity in a quantum dot system
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(6): 060303.
[7] Quantum color image scaling based on bilinear interpolation
Chao Gao(高超), Ri-Gui Zhou(周日贵), and Xin Li(李鑫). Chin. Phys. B, 2023, 32(5): 050303.
[8] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[9] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[10] Approximate error correction scheme for three-dimensional surface codes based reinforcement learning
Ying-Jie Qu(曲英杰), Zhao Chen(陈钊), Wei-Jie Wang(王伟杰), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2023, 32(10): 100307.
[11] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[12] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[13] Design of sextuple-mode triple-ring HTS UWB filter using two-round interpolation
Ming-En Tian(田明恩), Zhi-He Long(龙之河), You Lan(蓝友), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2021, 30(5): 058503.
[14] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[15] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
No Suggested Reading articles found!