Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070701    DOI: 10.1088/1674-1056/ad3b87
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Development of 400-μW cryogen-free dilution refrigerators for quantum experiments

Xiang Guan(关翔)1, Jie Fan(樊洁)1, Yong-Bo Bian(边勇波)1, Zhi-Gang Cheng(程智刚)1,2, and Zhong-Qing Ji(姬忠庆)1,†
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10mK, with a minimum temperature of 7.6mK and a cooling power of 450 μW at 100mK. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.
Keywords:  cryogen-free dilution refrigerator      quantum computing      low-temperature detector      superconducting magnet  
Received:  05 February 2024      Revised:  16 March 2024      Accepted manuscript online: 
PACS:  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
  67.25.-k (4He)  
  67.30.-n (3He)  
  67.60.-g (Mixtures of 3He and 4He)  
Fund: This work was supported by the Beijing Commission of Science and Technology (Grant No.Z211100004021012) and Special Research Assistant Program of the Chinese Academy of Sciences (E3VP021RX4).
Corresponding Authors:  Zhong-Qing Ji     E-mail:  zji@iphy.ac.cn

Cite this article: 

Xiang Guan(关翔), Jie Fan(樊洁), Yong-Bo Bian(边勇波), Zhi-Gang Cheng(程智刚), and Zhong-Qing Ji(姬忠庆) Development of 400-μW cryogen-free dilution refrigerators for quantum experiments 2024 Chin. Phys. B 33 070701

[1] Zu H Y, Dai W, De Waele A T A M 2022 Cryogenics. 121 103390
[2] IBM scientists cool down the world’s largest quantum-ready cryogenic concept system
[3] Hollister Matthew I, Dhuley R C and Tatkowski G L 2022 IOP Conf. Series: Materials Science and Engineering. 1241 012045
[4] Matthew I Hollister, Ram C Dhuley, Christopher James, et al. 2023 United States https://www.osti.gov/servlets/purl/1989898.
[5] https://iop.cas.cn/xwzx/snxw/202106/t202106256117203.html.
[6] https://www.ahu.edu.cn/2023/0328/c15059a303670/page.htm.
[7] https://mp.weixin.qq.com/s/RnVhacMrma8xJEfWOKnWrA.
[8] https://originqc.com.cn/zh/quantumcontrol.html?lv2id=44&lv3id=207.
[9] http://www.physike.com/.
[10] Uhlig Kurt 2023 Cryogenics 130 103649
[11] Ji Z, Fan J, Dong J, et al. 2022 Chin. Phys. B 31 120703
[12] Poole T, Foster T and Matthews A J 2023 Cryogenics 130 103632
[13] Yan S H and Lu G 1985 The principles and methods of low-temperature physics experiments p. 452 (in Chinese)
[14] Li H, Wang Y Y, Shi Y H, et al. 2023 npj Quantum Inf. 9 40
[1] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[2] Electric field dependence of spin qubit in a Si-MOS quantum dot
Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(6): 060312.
[3] Energy shift and subharmonics induced by nonlinearity in a quantum dot system
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(6): 060303.
[4] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[5] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[6] Approximate error correction scheme for three-dimensional surface codes based reinforcement learning
Ying-Jie Qu(曲英杰), Zhao Chen(陈钊), Wei-Jie Wang(王伟杰), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2023, 32(10): 100307.
[7] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[8] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[9] Development of a cryogen-free dilution refrigerator
Zhongqing Ji(姬忠庆), Jie Fan(樊洁), Jing Dong(董靖), Yongbo Bian(边勇波), and Zhi-Gang Cheng(程智刚). Chin. Phys. B, 2022, 31(12): 120703.
[10] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[11] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[12] Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(12): 128502.
[13] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
[14] Fabrication and characterization of superconducting multiqubit device with niobium base layer
Feifan Su(宿非凡), Zhaohua Yang(杨钊华), Shoukuan Zhao(赵寿宽), Haisheng Yan(严海生), Ziting Wang(王子婷), Xiaohui Song(宋小会), Ye Tian(田野), and Shiping Zhao(赵士平). Chin. Phys. B, 2021, 30(10): 100304.
[15] Quantum oscillation measurements in high magnetic field and ultra-low temperature
Pu Wang(王瀑), Gang Li(李岗), Jian-Lin Luo(雒建林). Chin. Phys. B, 2018, 27(7): 077101.
No Suggested Reading articles found!