Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060312    DOI: 10.1088/1674-1056/ad3812
GENERAL Prev   Next  

Electric field dependence of spin qubit in a Si-MOS quantum dot

Rong-Long Ma(马荣龙)1,2,†, Ming Ni(倪铭)1,2,†, Yu-Chen Zhou(周雨晨)1,2, Zhen-Zhen Kong(孔真真)3, Gui-Lei Wang(王桂磊)3,4,5, Di Liu(刘頔)1,2, Gang Luo(罗刚)1,2, Gang Cao(曹刚)1,2,5, Hai-Ou Li(李海欧)1,2,5,‡, and Guo-Ping Guo(郭国平)1,2,5,6
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
4 Beijing Superstring Academy of Memory Technology, Beijing 100176, China;
5 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China;
6 Origin Quantum Computing Company Limited, Hefei 230026, China
Abstract  Valley, the intrinsic feature of silicon, is an inescapable subject in silicon-based quantum computing. At the spin-valley hotspot, both Rabi frequency and state relaxation rate are significantly enhanced. With protection against charge noise, the valley degree of freedom is also conceived to encode a qubit to realize noise-resistant quantum computing. Here, based on the spin qubit composed of one or three electrons, we characterize the intrinsic properties of valley in an isotopically enriched silicon quantum dot (QD) device. For one-electron qubit, we measure two electric-dipole spin resonance (EDSR) signals which are attributed to partial occupation of two valley states. The resonance frequencies of two EDSR signals have opposite electric field dependences. Moreover, we characterize the electric field dependence of the upper valley state based on three-electron qubit experiments. The difference of electric field dependences of the two valleys is 52.02MHz/V, which is beneficial for tuning qubit frequency to meet different experimental requirements. As an extension of electrical control spin qubits, the opposite electric field dependence is crucial for qubit addressability, individual single-qubit control and two-qubit gate approaches in scalable quantum computing.
Keywords:  silicon-based quantum computing      valley      electric-dipole spin resonance  
Received:  05 March 2024      Revised:  22 March 2024      Accepted manuscript online:  27 March 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074368, 92165207, 12034018, and 92265113), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302300), the Anhui Province Natural Science Foundation (Grant No. 2108085J03) and the USTC Tang Scholarship.
Corresponding Authors:  Hai-Ou Li     E-mail:  haiouli@ustc.edu.cn

Cite this article: 

Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平) Electric field dependence of spin qubit in a Si-MOS quantum dot 2024 Chin. Phys. B 33 060312

[1] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[2] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M 2007 Rev. Mod. Phys. 79 1217
[3] Zhang X, Li H O, Wang K, Cao G, Xiao M and Guo G P 2018 Chin. Phys. B 27 020305
[4] Wang K, Li H O, Xiao M, Cao G and Guo G P 2018 Chin. Phys. B 27 090308
[5] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 Natl. Sci. Rev. 6 32
[6] Tyryshkin A M, Tojo S, Morton J J, et al. 2012 Nat. Mater. 11 143
[7] Zwerver A, Krähenmann T, Watson T, et al. 2022 Nat. Electron. 5 184
[8] Neyens S, Zietz O, Watson T, et al. 2024 Nature 629 80
[9] Ha W, Ha S D, Choi M D, et al. 2021 Nano Lett. 22 1443
[10] Camenzind L C, Geyer S, Fuhrer A, Warburton R J, Zumbühl D M and Kuhlmann A V 2022 Nat. Electron. 5 178
[11] Veldhorst M, Hwang J, Yang C, et al. 2014 Nat. Nanotechnol. 9 981
[12] Yoneda J, Takeda K, Otsuka T, et al. 2018 Nat. Nanotechnol. 13 102
[13] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M 2022 Nature 601 343
[14] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G and Tarucha S 2022 Nature 601 338
[15] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E and Petta J R 2022 Sci. Adv. 8 eabn5130
[16] Takeda K, Noiri A, Nakajima T, Kobayashi T and Tarucha S 2022 Nature 608 682
[17] Phillips J 1962 Phys. Rev. 125 1931
[18] Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437
[19] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961
[20] Yang C, Rossi A, Ruskov R, Lai N, Mohiyaddin F, Lee S, Tahan C, Klimeck G, Morello A and Dzurak A 2013 Nat. Commun. 4 2069
[21] Eriksson M A, Friesen M, Coppersmith S N, Joynt R, Klein L J, Slinker K, Tahan C, Mooney P, Chu J and Koester S 2004 Quantum Inform. Process. 3 133
[22] Saraiva A, Calderón M, Capaz R B, Hu X, Sarma S D and Koiller B 2011 Phys. Rev. B 84 155320
[23] Kawakami E, Scarlino P, Ward D R, Braakman F, Savage D, Lagally M, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L 2014 Nat. Nanotechnol. 9 666
[24] Culcer D, Saraiva A, Koiller B, Hu X and Sarma S D 2012 Phys. Rev. Lett. 108 126804
[25] Schoenfield J S, Freeman B M and Jiang H 2017 Nat. Commun. 8 64
[26] Penthorn N E, Schoenfield J S, Rooney J D, Edge L F and Jiang H 2019 NPJ Quantum Inf. 5 94
[27] Corna A, Bourdet L, Maurand R, et al. 2018 NPJ Quantum Inf. 4 6
[28] Klemt B, El-Homsy V, Nurizzo M, et al. 2023 arXiv:2303.04960
[cond-mat.mes-hall]
[29] Huang P and Hu X 2014 Phys. Rev. B 90 235315
[30] Zhang X, Hu R Z, Li H O, et al. 2020 Phys. Rev. Lett. 124 257701
[31] Scarlino P, Kawakami E, Jullien T, Ward D, Savage D, Lagally M, Friesen M, Coppersmith S, Eriksson M and Vandersypen L 2017 Phys. Rev. B 95 165429
[32] Hansen I, Seedhouse A E, Chan K W, Hudson F, Itoh K M, Laucht A, Saraiva A, Yang C H and Dzurak A S 2022 Appl. Phys. Rev. 9 031409
[33] Laucht A, Muhonen J T, Mohiyaddin F A, et al. 2015 Sci. Adv. 1 e1500022
[34] Xiong H, Ficheux Q, Somoroff A, Nguyen L B, Dogan E, Rosenstock D, Wang C, Nesterov K N, Vavilov M G and Manucharyan V E 2022 Phys. Rev. Res. 4 023040
[35] Petit L, Russ M, Eenink G H, Lawrie W I, Clarke J S, Vandersypen L M and Veldhorst M 2022 Commun. Mater. 3 82
[36] Zajac D, Hazard T, Mi X, Wang K and Petta J R 2015 Appl. Phys. Lett. 106 223507
[37] Dodson J, Holman N, Thorgrimsson B, Neyens S F, MacQuarrie E, McJunkin T, Foote R H, Edge L, Coppersmith S and Eriksson M 2020 Nanotechnology 31 505001
[38] Hu R Z, Ma R L, Ni M, et al. 2021 Nanomaterials 11 2486
[39] Hu R Z, Ma R L, Ni M, et al. 2023 Appl. Phys. Lett. 122 134002
[40] Ma R L, Li A R, Wang C, et al. 2024 Phys. Rev. Appl. 21 014044
[41] Elzerman J, Hanson R, Willems van Beveren L, Witkamp B, Vandersypen L and Kouwenhoven L P 2004 Nature 430 431
[42] Morello A, Pla J J, Zwanenburg F A, et al. 2010 Nature 467 687
[43] Hu R Z, Zhu S K, Zhang X, et al. 2023 Chin. Phys. B 33 010304
[44] Pioro-Ladriere M, Obata T, Tokura Y, Shin Y S, Kubo T, Yoshida K, Taniyama T and Tarucha S 2008 Nat. Phys. 4 776
[45] Zhang X, Zhou Y, Hu R Z, et al. 2021 Phys. Rev. Appl. 15 044042
[46] Yang C, Lim W, Lai N, Rossi A, Morello A and Dzurak A 2012 Phys. Rev. B 86 115319
[47] Zhao R, Tanttu T, Tan K Y, et al. 2019 Nat. Commun. 10 5500
[48] Barnes E, Kestner J, Nguyen N and Sarma S D 2011 Phys. Rev. B 84 235309
[49] Veldhorst M, Ruskov R, Yang C, Hwang J, Hudson F, Flatté M, Tahan C, Itoh K M, Morello A and Dzurak A 2015 Phys. Rev. B 92 201401
[50] Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G and Petta J R 2018 Science 359 439
[51] Tokura Y, van der Wiel W G, Obata T and Tarucha S 2006 Phys. Rev. Lett. 96 047202
[52] Friesen M and Coppersmith S 2010 Phys. Rev. B 81 115324
[53] Gamble J K, Eriksson M, Coppersmith S and Friesen M 2013 Phys. Rev. B 88 035310
[54] Scarlino P, Kawakami E, Ward D, Savage D, Lagally M, Friesen M, Coppersmith S, Eriksson M and Vandersypen L 2015 Phys. Rev. Lett. 115 106802
[1] Induced magneto-conductivity in a two-node Weyl semimetal under Gaussian random disorder
Chuanxiong Xu(徐川雄), Haoping Yu(于昊平), Mei Zhou(周梅), and Xuanting Ji(吉轩廷). Chin. Phys. B, 2024, 33(9): 097502.
[2] Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure
Xiao-Jing Dong(董晓晶) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(7): 077303.
[3] Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device
Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航). Chin. Phys. B, 2024, 33(6): 068502.
[4] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[5] Transport properties of Hall-type quantum states in disordered bismuthene
Jiaojiao Zhou(周娇娇), Jiangying Yu(余江应), Shuguang Cheng(成淑光), and Hua Jiang(江华). Chin. Phys. B, 2024, 33(4): 047105.
[6] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[7] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[8] Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
Fei Wang(王斐), Yaling Zhang(张亚玲), Wenjia Yang(杨文佳), Huisheng Zhang(张会生), and Xiaohong Xu(许小红). Chin. Phys. B, 2024, 33(1): 017306.
[9] Progress on two-dimensional ferrovalley materials
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新). Chin. Phys. B, 2024, 33(1): 017505.
[10] Valley transport in Kekulé structures of graphene
Juan-Juan Wang(王娟娟) and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017801.
[11] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[12] Valley filtering and valley-polarized collective modes in bulk graphene monolayers
Jian-Long Zheng(郑建龙) and Feng Zhai(翟峰). Chin. Phys. B, 2024, 33(1): 017203.
[13] Valley-dependent transport in a mescoscopic twisted bilayer graphene device
Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017205.
[14] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[15] High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal
Xiaorong Wang(王晓蓉), Hongming Fei(费宏明), Han Lin(林瀚), Min Wu(武敏), Lijuan Kang(康丽娟), Mingda Zhang(张明达), Xin Liu(刘欣), Yibiao Yang(杨毅彪), and Liantuan Xiao(肖连团). Chin. Phys. B, 2023, 32(7): 074205.
No Suggested Reading articles found!