Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040302    DOI: 10.1088/1674-1056/adb40e
GENERAL Prev   Next  

Robust quantum gate optimization with first-order derivatives of ion–phonon and ion–ion couplings in trapped ions

Jing-Bo Wang(汪景波)†
Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  Trapped ion hardware has made significant progress recently and is now one of the leading platforms for quantum computing. To construct two-qubit gates in trapped ions, experimental manipulation approaches for ion chains are becoming increasingly prevalent. Given the restricted control technology, how implementing high-fidelity quantum gate operations is crucial. Many works in current pulse design optimization focus on ion-phonon and effective ion-ion couplings while ignoring the first-order derivative terms expansion impacts of these two terms brought on by experiment defects. This paper proposes a novel robust quantum control optimization method in trapped ions. By introducing the first-order derivative terms caused by the error into the optimization cost function, we generate an extremely robust Mølmer-Sørensen gate with infidelity below 103 under a drift noise range of ±10 kHz, the relative robustness achieves a tolerance of ±5%, compared to the 200-kHz frequency spacing between phonon modes, and for time noise drift, the tolerance reached to 2%. Our work reveals the vital role of the first-order derivative terms of coupling in trapped ion pulse control optimization, especially the first-order derivative terms of ion-ion coupling. It provides a robust optimization scheme for realizing more efficient entangled states in trapped ion platforms.
Keywords:  trapped ion quantum computing      robust optimization      high-fidelity quantum gates      magnus expansion  
Received:  15 November 2024      Revised:  07 February 2025      Accepted manuscript online:  08 February 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  02.30.Yy (Control theory)  
  37.10.Ty (Ion trapping)  
Corresponding Authors:  Jing-Bo Wang     E-mail:  wangjb@baqis.ac.cn

Cite this article: 

Jing-Bo Wang(汪景波) Robust quantum gate optimization with first-order derivatives of ion–phonon and ion–ion couplings in trapped ions 2025 Chin. Phys. B 34 040302

[1] Bruzewicz C D, Chiaverini J, McConnell R and Sage J M 2019 Appl. Phys. Rev. 6 021314
[2] Mehta K K, Zhang C, Malinowski M, Nguyen T L, Stadler M and Home J P 2020 Nature 586 533
[3] Niffenegger R J, Stuart J, Sorace-Agaskar C, Kharas D, Bramhavar S, Bruzewicz C D, Loh W, Maxson R T, McConnell R, Reens D, et al. 2020 Nature 586 538
[4] Shapira Y, Markov J, Akerman N, Stern A and Ozeri R 2025 Phys. Rev. Lett. 134 010602
[5] Linke N M, Maslov D, Roetteler M, Debnath S, Figgatt C, Landsman K A, Wright K and Monroe C 2017 Proc. Natl. Acad. Sci. USA 114 3305
[6] Srinivas R, Burd S, Knaack H, Sutherland R, Kwiatkowski A, Glancy S, Knill E, Wineland D, Leibfried D, Wilson A C, et al. 2021 Nature 597 209
[7] Ballance C, Harty T, Linke N, Sepiol M and Lucas D 2016 Phys. Rev. Lett. 117 060504
[8] Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D, et al. 2016 Phys. Rev. Lett. 117 060505
[9] Preskill J 2018 Quantum 2 79
[10] Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X and Monroe C 2017 Nature 551 601
[11] Kawashima Y, Lloyd E, Coons M P, Nam Y, Matsuura S, Garza A J, Johri S, Huntington L, Senicourt V, Maksymov A O, et al. 2021 Commun. Phys. 4 1
[12] Hempel C, Maier C, Romero J, McClean J, Monz T, Shen H, Jurcevic P, Lanyon B P, Love P, Babbush R, et al. 2018 Phys. Rev. X 8 031022
[13] Nam Y, Chen J S, Pisenti N C, Wright K, Delaney C, Maslov D, Brown K R, Allen S, Amini J M, Apisdorf J, et al. 2020 npj Quantum Information 6 1
[14] Campbell E T, Terhal B M and Vuillot C 2017 Nature 549 172
[15] Linke N M, Gutierrez M, Landsman K A, Figgatt C, Debnath S, Brown K R and Monroe C 2017 Sci. Adv. 3 e1701074
[16] Bermudez A, Xu X, Nigmatullin R, O’Gorman J, Negnevitsky V, Schindler P, Monz T, Poschinger U, Hempel C, Home J, et al. 2017 Phys. Rev. X 7 041061
[17] Benhelm J, Kirchmair G, Roos C F and Blatt R 2008 Nat. Phys. 4 463
[18] Paul W 1990 Rev. Mod. Phys. 62 531
[19] Brown L S and Gabrielse G 1986 Rev. Mod. Phys. 58 233
[20] Britton J W, Sawyer B C, Keith A C, Wang C C J, Freericks J K, Uys H, Biercuk M J and Bollinger J J 2012 Nature 484 489
[21] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[22] Bowler R, Gaebler J, Lin Y, Tan T R, Hanneke D, Jost J D, Home J, Leibfried D and Wineland D J 2012 Phys. Rev. Lett. 109 080502
[23] Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Moses S A, Allman M, Baldwin C, Foss-Feig M, Hayes D, Mayer K, et al. 2021 Nature 592 209
[24] Choi T, Debnath S, Manning T, Figgatt C, Gong Z X, Duan L M and Monroe C 2014 Phys. Rev. Lett. 112 190502
[25] Myerson A, Szwer D, Webster S, Allcock D, Curtis M, Imreh G, Sherman J, Stacey D, Steane A and Lucas D 2008 Phys. Rev. Lett. 100 200502
[26] Harty T, Allcock D, Ballance C J, Guidoni L, Janacek H, Linke N, Stacey D and Lucas D 2014 Phys. Rev. Lett. 113 220501
[27] Zhu M D, Yan L, Qin X, ZhangWZ, Lin Y and Du J 2023 Chin. Phys. B 32 090702
[28] Song X, Liu T, Bian J, Lu P, Liu Y, Zhu F and Luo L 2024 Chin. Phys. Lett. 41 060301
[29] Wu Y, Wang S T and Duan L M 2018 Phys. Rev. A 97 062325
[30] CaiM L, Liu Z D, Jiang Y,Wu Y K, Mei Q X, ZhaoWD, He L, Zhang X, Zhou Z C and Duan L M 2022 Chin. Phys. Lett. 39 020502
[31] Hayes D, Clark S M, Debnath S, Hucul D, Inlek I V, Lee KW, Quraishi Q and Monroe C 2012 Phys. Rev. Lett. 109 020503
[32] Haddadfarshi F and Mintert F 2016 New J. Phys. 18 123007
[33] Manovitz T, Rotem A, Shaniv R, Cohen I, Shapira Y, Akerman N, Retzker A and Ozeri R 2017 Phys. Rev. Lett. 119 220505
[34] Shapira Y, Shaniv R, Manovitz T, Akerman N and Ozeri R 2018 Phys. Rev. Lett. 121 180502
[35] Webb A E, Webster S C, Collingbourne S, Bretaud D, Lawrence A M, Weidt S, Mintert F and Hensinger W K 2018 Phys. Rev. Lett. 121 180501
[36] Zarantonello G, Hahn H, Morgner J, Schulte M, Bautista-Salvador A, Werner R, Hammerer K and Ospelkaus C 2019 Phys. Rev. Lett. 123 260503
[37] Ruzic B P, Chow M N, Burch A D, Lobser D, Revelle M C, Wilson J M, Yale C G and Clark S M 2022 arXiv preprint arXiv: 2210.02372
[38] Jia Z, Huang S, Kang M, Sun K, Spivey R F, Kim J and Brown K R 2023 Phys. Rev. A 107 032617
[39] Nielsen M A and Chuang I 2002 Quantum computation and quantum information (Cambridge University Press)
[40] Sørensen A and Mølmer K 1999 Phys. Rev. Lett. 82 1971
[41] Zhu S L, Monroe C and Duan L M 2006 Europhys. Lett. 73 485
[42] Roos C F 2008 New J. Phys. 10 013002
[43] Steane A M, Imreh G, Home J P and Leibfried D 2014 New J. Phys. 16 053049
[44] Leung P H, Landsman K A, Figgatt C, Linke N M, Monroe C and Brown K R 2018 Phys. Rev. Lett. 120 020501
[45] Leung P H and Brown K R 2018 Phys. Rev. A 98 032318
[46] Lu Y, Zhang S, Zhang K, Chen W, Shen Y, Zhang J, Zhang J N and Kim K 2019 Nature 572 363
[47] Landsman K A, Wu Y, Leung P H, Zhu D, Linke N M, Brown K R, Duan L and Monroe C 2019 Phys. Rev. A 100 022332
[48] Milne A R, Edmunds C L, Hempel C, Roy F, Mavadia S and Biercuk M J 2020 Phys. Rev. Appl. 13 024022
[49] Bentley C D, Ball H, BiercukMJ, Carvalho A R, HushMR and Slatyer H J 2020 Advanced Quantum Technologies 3 2000044
[50] Green T J and Biercuk M J 2015 Phys. Rev. Lett. 114 120502
[51] James D 1998 Appl. Phys. B 2 181
[52] Zhu S L, Monroe C and Duan L M 2006 Phys. Rev. Lett. 97 050505
[1] Coherence-protected operations in hybrid superconducting circuit-magnon system
Le-Tian Zhu(朱乐天), Xing-Yu Zhu(朱行宇), Zhu-Cheng Yue(岳祝诚), Tao Tu(涂涛), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2025, 34(3): 030302.
[2] Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Kehan Wang(王柯涵), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(1): 010305.
[3] Correcting on-chip distortion of control pulses with silicon spin qubits
Ming Ni(倪铭), Rong-Long Ma(马荣龙), Zhen-Zhen Kong(孔真真), Ning Chu(楚凝), Wei-Zhu Liao(廖伟筑), Sheng-Kai Zhu(祝圣凯), Chu Wang(王儲), Gang Luo(罗刚), Di Liu(刘頔), Gang Cao(曹刚), Gui-Lei Wang(王桂磊), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(1): 010308.
[4] Automatic architecture design for distributed quantum computing
Ting-Yu Luo(骆挺宇), Yu-Zhen Zheng(郑宇真), Xiang Fu(付祥), and Yu-Xin Deng(邓玉欣). Chin. Phys. B, 2024, 33(12): 120302.
[5] Quantum state estimation based on deep learning
Haowen Xiao(肖皓文) and Zhiguang Han(韩枝光). Chin. Phys. B, 2024, 33(12): 120307.
[6] M2CS: A microwave measurement and control system for large-scale superconducting quantum processors
Jiawei Zhang(张家蔚), Xuandong Sun(孙炫东), Zechen Guo(郭泽臣), Yuefeng Yuan(袁跃峰), Yubin Zhang(张玉斌), Ji Chu(储继), Wenhui Huang(黄文辉), Yongqi Liang(梁咏棋), Jiawei Qiu(邱嘉威), Daxiong Sun(孙大雄), Ziyu Tao(陶子予), Jiajian Zhang(张家健), Weijie Guo(郭伟杰), Ji Jiang(蒋骥), Xiayu Linpeng(林彭夏雨), Yang Liu(刘阳), Wenhui Ren(任文慧), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2024, 33(12): 120309.
[7] Exact quantum dynamics for two-level systems with time-dependent driving
Zhi-Cheng He(贺郅程), Yi-Xuan Wu(吴奕璇), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2024, 33(12): 120310.
[8] In situ non-destructive measurement of Josephson junction resistance using fritting contact technique
Lei Du(杜磊), Hao-Ran Tao(陶浩然), Liang-Liang Guo(郭亮亮), Hai-Feng Zhang(张海峰), Yong Chen(陈勇), Xin Tian(田昕), Chi Zhang(张驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(11): 110309.
[9] Improved model on asynchronous measurement-device-independent quantum key distribution with realistic devices
Mingshuo Sun(孙铭烁), Chun-Hui Zhang(张春辉), Rui Zhang(章睿), Xing-Yu Zhou(周星宇), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(11): 110302.
[10] Diagnosing quantum crosstalk in superconducting quantum chips by using out-of-time-order correlators
Yujia Zhang(张宇佳), Yu Zhang(张钰), Shaoxiong Li(李邵雄), Wen Zheng(郑文), and Yang Yu(于扬). Chin. Phys. B, 2024, 33(11): 110306.
[11] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[12] Simulations of superconducting quantum gates by digital flux tuner for qubits
Xiao Geng(耿霄), Kaiyong He(何楷泳), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2024, 33(7): 070305.
[13] Optimize Purcell filter design for reducing influence of fabrication variation
Xiao Cai(蔡晓), Yi-Biao Zhou(周翼彪), Wen-Long Yu(于文龙), Kang-Lin Xiong(熊康林), and Jia-Gui Feng(冯加贵). Chin. Phys. B, 2024, 33(6): 068501.
[14] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[15] Electric field dependence of spin qubit in a Si-MOS quantum dot
Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(6): 060312.
No Suggested Reading articles found!