Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 060302    DOI: 10.1088/1674-1056/acc0fa
GENERAL Prev   Next  

Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line

Yang-Qing Guo(郭羊青)1, Ping-Xing Chen(陈平形)1, and Jian Li(李剑)2,3,4,†
1 Department of Physics, National University of Defense Technology, Changsha 410073, China;
2 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
3 International Quantum Academy, Shenzhen 518048, China;
4 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Quantum entanglement, a key resource in quantum information processing, is reduced by interaction between the quantum system concerned and its unavoidable noisy environment. Therefore it is of particular importance to study the dynamical properties of entanglement in open quantum systems. In this work, we mainly focus on two qubits coupled to an adjustable environment, namely a semi-infinite transmission line. The two qubits' relaxations, through individual channels or collective channel or both, can be adjusted by the qubits' transition frequencies. We examine entanglement dynamics in this model system with initial Werner state, and show that the phenomena of entanglement sudden death and revival can be observed. Due to the hardness of preparing the Werner state experimentally, we introduce a new type of entangled state called pseudo-Werner state, which preserves as much entangling property as the Werner state, and more importantly, it is experiment friendly. Furthermore, we provide detailed procedures for generating pseudo-Werner state and studying entanglement dynamics with it, which can be straightforwardly implemented in a superconducting waveguide quantum electrodynamics system.
Keywords:  superconducting qubits      quantum entanglement      Werner state  
Received:  18 January 2023      Revised:  02 March 2023      Accepted manuscript online:  03 March 2023
PACS:  03.67.Bg (Entanglement production and manipulation)  
  12.20.-m (Quantum electrodynamics)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province of China (Grant No. 2018B030326001), the National Natural Science Foundation of China (Grant No. 11874065), the Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. KYTDPT20181011104202253), and the Shenzhen Hong Kong Cooperation Zone for Technology and Innovation of China (Grant No. HZQB-KCZYB-2020050).
Corresponding Authors:  Jian Li     E-mail:  lij33@sustech.edu.cn

Cite this article: 

Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑) Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line 2023 Chin. Phys. B 32 060302

[1] Nielsen M A and Chuang I 2000 Quantum computation and quantum information (Cambridge: Cambridge University Press) pp. 11-12
[2] Ekert A K1991 Phys. Rev. Lett. 67 661
[3] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P2003 Nature 421 238
[4] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K1993 Phys. Rev. Lett. 70 1895
[5] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A1997 Nature 390 575
[6] Bennett C H and Wiesner S J1992 Phys. Rev. Lett. 69 2881
[7] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A1996 Phys. Rev. Lett. 76 4656
[8] Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K2001 Phys. Rev. Lett. 87 077902
[9] Peng X, Zhu X, Fang X, Feng M, Liu M and Gao K2003 Phys. Lett. A 306 271
[10] DiVincenzo D P2000 Fortschr. Phys. 48 771
[11] Yu T and Eberly J H2004 Phys. Rev. Lett. 93 140404
[12] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J2007 Phys. Rev. Lett. 98 180504
[13] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S and Davidovich L2007 Science 316 579
[14] Ficek Z and Tanaś R2006 Phys. Rev. A 74 024304
[15] Xu J, Li C, Gong M, Zou X, Shi C, Chen G and Guo G2010 Phys. Rev. Lett. 104 100502
[16] Li J and Paraoanu G S2009 New J. Phys. 11 113020
[17] López C E, Romero G, Lastra F, Solano E and Retamal J C2008 Phys. Rev. Lett. 101 080503
[18] Das S and Agarwal G S2009 J. Phys. B: At. Mol. Opt. Phys. 42 205502
[19] Man Z X, An N B and Xia Y2013 J. Opt. Soc. Am. B 30 1092
[20] Shan C, Chen T, Liu J, Cheng W, Liu T, Huang Y and Li H2010 Chin. Phys. B 19 060303
[21] Al-Qasimi A and James D F V2008 Phys. Rev. A 77 012117
[22] Kockum A F, Johansson G and Nori F2018 Phys. Rev. Lett. 120 140404
[23] Kannan B, Ruckriegel M J, Campbell D L, Kockum A F, Braumüller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Nori F, Orlando T P, Gustavsson S and Oliver W D2020 Nature 583 775
[24] Wen P Y, Ivakhnenko O V, Nakonechnyi M A, Suri B, Lin J J, Lin W J, Chen J C, Shevchenko S N, Nori F and Hoi I C2020 Phys. Rev. B 102 075448
[25] Wen P Y, Lin K T, Kockum A F, Suri B, Ian H, Chen J C, Mao S Y, Chiu C C, Delsing P, Nori F, Lin G D and Hoi I C2019 Phys. Rev. Lett. 123 233602
[26] Yang C, Su Q, Zheng S and Han S2013 Phys. Rev. A 87 022320
[27] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D2018 Phys. Rev. Appl. 10 054062
[28] Wootters W K1998 Phys. Rev. Lett. 80 2245
[29] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K1996 Phys. Rev. Lett. 76 722
[30] Li J and Paraoanu G S2010 Eur. Phys. J. D 56 255
[31] Barbieri M, De M F, Di N G and Mataloni P2004 Phys. Rev. Lett. 92 177901
[32] Simons R N2001 Coplanar Waveguide Circuits, Components, and Systems (New York: John Wiley & Sons) pp. 12-16
[1] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[9] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[10] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[11] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[12] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[13] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[14] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[15] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
No Suggested Reading articles found!