Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040303    DOI: 10.1088/1674-1056/adb68b
GENERAL Prev   Next  

RF detection of split-gate modes in Si-MOS quantum dots

Ning Chu(楚凝)1,2, Sheng-Kai Zhu(祝圣凯)1,2, Ao-Ran Li(李傲然)1,2, Chu Wang(王储)1,2, Wei-Zhu Liao(廖伟筑)1,2, Gang Cao(曹刚)1,2,3, Hai-Ou Li(李海欧)1,2,3,†, and Guo-Ping Guo(郭国平)1,2,3,4
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China (USTC), Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China;
4 Origin Quantum Computing Company Limited, Hefei 230088, China
Abstract  Radio frequency (RF) reflectometry is an effective and sensitive technique for detecting charge signal in semiconductor quantum dots, and its measurement bandwidth can reach the MHz level. However, in accumulation mode devices, the presence of parasitic capacitance makes RF reflectometry more difficult. The universal approach is relocating the ion implantation region approximately 10 μm from the center of the single-electron transistor (SET) and optimizing the design of the accumulation gates. But, this method puts forward more stringent requirements for micro-nano fabrication processing. Here, we propose a split-gate structure that enables RF reflectometry when the ion-implanted region and the ohmic contact are farther from the SET center. In Si-MOS devices, we employ a split-gate structure to achieve RF detection, with the ion-implanted region located 150 μm away from the center of the SET. Within an integration time of 140 nanoseconds, we achieved a readout fidelity exceeding 99.8% and a detection bandwidth of over 2 MHz. This is an alternative solution for micro-nano fabrication processing that cannot achieve ion implantation areas closer to the center of the chip, and is applicable to various silicon-based semiconductor systems.
Keywords:  silicon-based quantum computing      Si-MOS      radio-frequency readout  
Received:  23 January 2025      Revised:  11 February 2025      Accepted manuscript online:  17 February 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92165207, 12474490, 12034018, and 92265113), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302300), and the USTC Tang Scholarship.
Corresponding Authors:  Hai-Ou Li     E-mail:  haiouli@ustc.edu.cn

Cite this article: 

Ning Chu(楚凝), Sheng-Kai Zhu(祝圣凯), Ao-Ran Li(李傲然), Chu Wang(王储), Wei-Zhu Liao(廖伟筑), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平) RF detection of split-gate modes in Si-MOS quantum dots 2025 Chin. Phys. B 34 040303

[1] Burkard G, Ladd T D, Pan A, Nichol J M and Petta J R 2023 Rev. Mod. Phys. 95 025003
[2] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 Natl. Sci. Rev. 6 32
[3] Zhang X, Li H O, Wang K, Cao G, Xiao M and Guo G P 2018 Chin. Phys. B 27 020305
[4] Vahapoglu E, Slack-Smith J P, Leon R C C, Lim W H, Hudson F E, Day T, Tanttu T, Yang C H, Laucht A, Dzurak A S and Pla J J 2021 Sci. Adv. 7 eabg9158
[5] Ha W, Ha S D, Choi M D, Tang Y, Schmitz A E, Levendorf M P, Lee K, Chappell J M, Adams T S, Hulbert D R, Acuna E, Noah R S, Matten J W, Jura M P, Wright J A, Rakher M T and Borselli M G 2021 Nano Lett. 22 1443
[6] Camenzind L C, Geyer S, Fuhrer A, Warburton R J, Zumbühl D M, Kuhlmann A V 2022 Nat. Electron. 5 178
[7] Zwerver A M J, Krähenmann T, Watson T F, Lampert L, George H C, Pillarisetty R, Bojarski S A, Amin P, Amitonov S V, Boter J M, Caudillo R, Correas-Serrano D, Dehollain J P, Droulers G, Henry E M, Kotlyar R, Lodari M, Lüthi F, Michalak D J, Mueller B K, Neyens S, Roberts J, Samkharadze N, Zheng G, Zietz O K, Scappucci G, Veldhorst M, Vandersypen L M K and Clarke J S 2022 Nat. Electron. 5 184
[8] Neyens S, Zietz O K, Watson T F, Luthi F, Nethwewala A, George H C, Henry E, Islam M, Wagner A J, Borjans F, Connors E J, Corrigan J, Curry M J, Keith D, Kotlyar R, Lampert L F, Mądzik M T, Millard K, Mohiyaddin F A, Pellerano S, Pillarisetty R, Ramsey M, Savytskyy R, Schaal S, Zheng G, Ziegler J, Bishop N C, Bojarski S, Roberts J and Clarke J S 2024 Nature 629 80
[9] Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol. 9 981
[10] Petit L, Eenink H G J, Russ M, Lawrie W I L, Hendrickx N W, Philips S G J, Clarke J S, Vandersypen L M K and Veldhorst M 2020 Nature 580 355
[11] Yang C H, Leon R C C, Hwang J C C, Saraiva A, Tanttu T, Huang W, Camirand Lemyre J, Chan K W, Tan K Y, Hudson F E, Itoh K M, Morello A, Pioro-Ladrière M, Laucht A and Dzurak A S 2020 Nature 580 350
[12] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2017 Nat. Nanotechnol. 13 102
[13] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M K 2022 Nature 601 343
[14] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G, Tarucha S 2022 Nature 601 338
[15] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E and Petta J R 2022 Sci. Adv. 8 5130
[16] Takeda K, Noiri A, Nakajima T, Kobayashi T and Tarucha S 2022 Nature 608 682
[17] van Riggelen F, Lawrie W I L, Russ M, Hendrickx N W, Sammak A, Rispler M, Terhal B M, Scappucci G and Veldhorst M 2022 npj Quantum Information 8 124
[18] Kawakami E, Scarlino P, Ward D R, Braakman F R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2014 Nat. Nanotechnol. 9 666
[19] He Y, Gorman S K, Keith D, Kranz L, Keizer J G and Simmons M Y 2019 Nature 571 371
[20] Huang W, Yang C H, Chan K W, Tanttu T, Hensen B, Leon R C C, Fogarty M A, Hwang J C C, Hudson F E, Itoh K M, Morello A, Laucht A and Dzurak A S 2019 Nature 569 532
[21] Watson T F, Philips S G J, Kawakami E, Ward D R, Scarlino P, Veldhorst M, Savage D E, LagallyMG, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2018 Nature 555 633
[22] GilbertW, Tanttu T, LimWH, Feng M, Huang J Y, Cifuentes J D, Serrano S, Mai P Y, Leon R C C, Escott C C, Itoh K M, Abrosimov N V, Pohl H-J, Thewalt M L W, Hudson F E, Morello A, Laucht A, Yang C H, Saraiva A and Dzurak A S 2023 Nat. Nanotechnol. 18 131
[23] Ni M, Ma R L, Kong Z Z, Xue X, Zhu S K, Wang C, Li A R, Chu N, Liao W Z, Cao G, Wang G L, Guo G C, Hu X, Jiang H W, Li H O and Guo G P 2023, p. 2023 arXiv: 2310.06700cond-mat.mes-hall]
[24] Schoelkopf R J, Wahlgren P, Kozhevnikov A A, Delsing P and Prober D E 1998 Science 280 1238
[25] Lu W, Ji Z, Pfeiffer L, West K W and Rimberg A J 2003 Nature 423 422
[26] Serrano S, Feng M K, Lim W H, Seedhouse A E, Tanttu T, Gilbert W, Escott C C, Abrosimov N V, Pohl H J, Thewalt M L W, Hudson F E, Saraiva A, Dzurak A S and Laucht A 2024 PRX Quantum 5 010301
[27] Pakkiam P, Timofeev A V, House M G, Hogg M R, Kobayashi T, Koch M, Rogge S and Simmons M Y 2018 Phys. Rev. X 8 041032
[28] Philips S G J, Mądzik M T, Amitonov S V, de Snoo S L, Russ M, Kalhor N, Volk C, Lawrie W I L, Brousse D, Tryputen L, Wuetz B P, Sammak A, Veldhorst M, Scappucci G and Vandersypen L M K 2022 Nature 609 919
[29] Vigneau F, Fedele F, Chatterjee A, Reilly D, Kuemmeth F, Gonzalez-Zalba M F, Laird E and Ares N 2023 Appl. Phys. Rev. 10 021305
[30] Wang K, Payette C, Dovzhenko Y, Deelman P W and Petta J R 2013 Phys. Rev. Lett. 111 046801
[31] Payette C, Wang K, Koppinen P J, Dovzhenko Y, Sturm J C and Petta J R 2012 Appl. Phys. Lett. 100 043508
[32] Connors E J, Nelson J J and Nichol J M 2020 Phys. Rev. Appl. 13 024019
[33] Noiri A, Takeda K, Yoneda J, Nakajima T, Kodera T and Tarucha S 2020 Nano Lett. 20 947
[34] Liu Y Y, Philips S G J, Orona L A, Samkharadze N, McJunkin T, Mac-Quarrie E R, Eriksson M A, Vandersypen L M K and Yacoby A 2021 Phys. Rev. Appl. 16 014057
[35] Volk C, Chatterjee A, Ansaloni F, Marcus C M and Kuemmeth F 2019 Nano Lett. 19 5628
[36] Ares N, Schupp F J, Mavalankar A, Rogers G, Griffiths J, Jones G A C, Farrer I, Ritchie D A, Smith C G, Cottet A, Briggs G A D and Laird E A 2016 Phys. Rev. Appl. 5 034011
[37] Elzerman J M, Hanson R,Willems van Beveren L H,Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
[38] Ma R L, Ni M, Zhou Y C, Kong Z Z,Wang G L, Liu D, Luo G, Cao G, Li H O and Guo G P 2024 Chin. Phys. Lett. 33 060312
[39] Ma R L, Zhu S K, Kong Z Z, Sun T P, Ni M, Zhou Y C, Zhou Y, Luo G, Cao G, Wang G L, Li H O and Guo G P 2024 Phys. Rev. Appl. 21 034022
[40] Zhang X, Hu R Z, Li H O, Jing F M, Zhou Y, Ma R L, Ni M, Luo G, Cao G,Wang G L, Hu X, Jiang HW, Guo G C and Guo G P 2020 Phys. Rev. Lett. 124 257701
[41] Hu R Z, Ma R L, Ni M, Zhang X, Zhou Y, Wang K, Luo G, Cao G, Kong Z Z, Wang G L, Li H O and Guo G P 2021 Nanomaterials 11 2486
[42] Ma R L, Li A R, Wang C, Kong Z Z, Liao W Z, Ni M, Zhu S K, Chu N, Zhang C X, Liu D, Cao G, Wang G L, Li H O and Guo G P 2024 Phys. Rev. Appl. 21 014044
[1] Electric field dependence of spin qubit in a Si-MOS quantum dot
Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(6): 060312.
No Suggested Reading articles found!