Special Issue:
SPECIAL TOPIC — Quantum computing and quantum sensing
|
SPECIAL TOPIC — Quantum computing and quantum sensing |
Prev
Next
|
|
|
Delayed-measurement one-way quantum computing on cloud quantum computer |
Zhi-Peng Yang(杨智鹏)1,2, Yu-Ran Zhang(张煜然)3, Fu-Li Li(李福利)2, and Heng Fan(范桁)4,1,† |
1 Beijing Academy of Quantum Information Science, Beijing 100193, China; 2 Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; 3 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China; 4 Institute of Physics, China Academy of Sciences, Beijing 100190, China |
|
|
Abstract One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes. Recently, a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes. In this work, by considering the delayed-measurement approach, we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform: Quafu. The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol. Since this modified cluster state decreases the number of physical qubits required to implement one-way computation, both the scalability and complexity of the computing process are improved. Compared to previous work, this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements. We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing. Our results suggest that in a noisy intermediate-scale quantum (NISQ) era, the modified method shows a significant advantage for one-way quantum computation.
|
Received: 30 May 2024
Revised: 26 June 2024
Accepted manuscript online: 12 July 2024
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: The authors appreciate Franco Nori for the valuable discussions. Project supported by the National Natural Science Foundation of China (Grant Nos. 92265207 and T2121001) and Beijing Natural Science Foundation (Grant No. Z200009). |
Corresponding Authors:
Heng Fan
E-mail: hfan@iphy.ac.cn
|
Cite this article:
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁) Delayed-measurement one-way quantum computing on cloud quantum computer 2024 Chin. Phys. B 33 090304
|
[1] Vandersypen L M K and Chuang I L 2005 Rev. Mod. Phys. 76 1037 [2] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313 [3] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379 [4] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005 [5] Li Y, Xin T, Qiu C, Li K, Gangqin L, Li J, Wan Y and Lu D 2023 Fundamental Res. 3 229 [6] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188 [7] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910 [8] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312 [9] Newman M, de Castro L A and Brown K R 2020 Quantum 4 295 [10] Bourassa J E, Alexander R N, Vasmer M, Patil A, Tzitrin I, Matsuura T, Su D, Baragiola B Q, Guha S, Dauphinais G, Sabapathy K K, Menicucci N C and Dhand I 2021 Quantum 5 392 [11] Zwerger M, Briegel H J and Dür W 2013 Phys. Rev. Lett. 110 260503 [12] Ferguson R R, Dellantonio L, Balushi A A, Jansen K, Dür W and Muschik C A 2021 Phys. Rev. Lett. 126 220501 [13] Asavanant W, Shiozawa Y, Yokoyama S, Charoensombutamon B, Emura H, Alexander R N, Takeda S, Yoshikawa J I, Menicucci N C, Yonezawa H and Furusawa A 2019 Science 366 373 [14] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S and Andersen U L 2019 Science 366 369 [15] Zhou Z Y, Gneiting C, You J Q and Nori F 2023 Phys. Rev. A 108 023704 [16] Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005 Nature 434 169 [17] Prevedel R, Walther P, Tiefenbacher F, Böhi P, Kaltenbaek R, Jennewein T and Zeilinger A 2007 Nature 445 65 [18] Tame M S, Prevedel R, Paternostro M, Böhi P, Kim M S and Zeilinger A 2007 Phys. Rev. Lett. 98 140501 [19] Chen K, Li C M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A and Pan J W 2007 Phys. Rev. Lett. 99 120503 [20] Vallone G, Pomarico E, De Martini F and Mataloni P 2008 Phys. Rev. Lett. 100 160502 [21] Kaltenbaek R, Lavoie J, Zeng B, D B S and Resch K J 2010 Nat. Phys. 6 850 [22] Tame M S, Bell B A, Di Franco C, Wadsworth W J and Rarity J G 2014 Phys. Rev. Lett. 113 200501 [23] Lanyon B P, Jurcevic P, Zwerger M, Hempel C, Martinez E A, Dür W, Briegel H J, Blatt R and Roos C F 2013 Phys. Rev. Lett. 111 210501 [24] Ju C, Zhu J, Peng X, Chong B, Zhou X and Du J 2010 Phys. Rev. A 81 012322 [25] Wei T C 2021 Measurement-based quantum computation (Oxford University Press) [26] Albarrán-Arriagada F, Alvarado Barrios G, Sanz M, Romero G, Lamata L, Retamal J C and Solano E 2018 Phys. Rev. A 97 032320 [27] You J and Nori F 2011 Nature 474 589 [28] Devoret M H, Wallraff A and Martinis J M 2004 arXiv:condmat/0411174 [cond-mat.mes-hall] [29] Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401 [30] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1 [31] Kockum A F and Nori F 2019 Fundamentals and Frontiers of the Josephson Effect edn. Tafuri (Springer) pp. 703-741 [32] Tanamoto T, Liu Y X, Fujita S, Hu X and Nori F 2006 Phys. Rev. Lett. 97 230501 [33] You J Q, Wang X B, Tanamoto T and Nori F 2007 Phys. Rev. A 75 052319 [34] Tanamoto T, Liu Y X, Hu X and Nori F 2009 Phys. Rev. Lett. 102 100501 [35] Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303 [36] Chen G, Chen Z, Yu L and Liang J 2007 Phys. Rev. A 76 024301 [37] Li Z, Ma S L, Yang Z P, Fang A P, Li P B, Gao S Y and Li F L 2016 Phys. Rev. A 93 042305 [38] Lähteenmäki P, Paraoanu G S, Hassel J and Hakonen P J 2016 Nature Communications 7 12548 [39] Yang Z P, Li Z, Ma S L and Li F L 2017 Phys. Rev. A 96 012327 [40] Wang Y, Li Y, Yin Z Q and Zeng B 2018 npj Quantum Information 4 46 [41] Gong M, Chen M C, Zheng Y, Wang S, Zha C, Deng H, Yan Z, Rong H, Wu Y, Li S, Chen F, Zhao Y, Liang F, Lin J, Xu Y, Guo C, Sun L, Castellano A D, Wang H, Peng C, Lu C Y, Zhu X and Pan J W 2019 Phys. Rev. Lett. 122 110501 [42] Besse J C, Reuer K, Collodo M C, Wulff A, Wernli L, Copetudo A, Malz D, Magnard P, Akin A, Gabureac M, Norris G J, Cirac J I, Wallraff A and Eichler C 2020 Nat. Commun. 11 4877 [43] Shirai S, Zhou Y, Sakata K, Mukai H and Tsai J S 2021 arXiv:2105.08609[quant-ph] [44] Yang Z P, Ku H Y, Baishya A, Zhang Y R, Kockum A F, Chen Y N, Li F L, Tsai J S and Nori F 2022 Phys. Rev. A 105 042610 [45] Li Y, Wang Z, Bao Z, Wu Y, Wang J, Yang J, Xiong H, Song Y, Zhang H and Duan L 2023 Chip 2 100063 [46] Quafu [47] Zhao Y Y, Ku H Y, Chen S L, Chen H B, Nori F, Xiang G Y, Li C F, Guo G C and Chen Y N 2020 npj Quantum Inf. 6 77 [48] Ku H Y, Weng H C, Shih Y A, Kuo P C, Lambert N, Nori F, Chuu C S and Chen Y N 2021 Phys. Rev. Res. 3 043083 [49] Ku H Y, Hsieh C Y, Chen S L, Chen Y N and Budroni C 2022 Nat. Commun. 13 4973 [50] Ku H Y, Hsieh C Y and Budroni C 2023 arXiv:2308.02252[quant-ph] [51] Hsieh C Y, Ku H Y and Budroni C 2023 arXiv:2309.06191[quant-ph] [52] Albarrán-Arriagada F, Lamata L, Solano E, Romero G and Retamal J C 2018 Phys. Rev. A 97 022306 [53] King A D, Raymond J, Lanting T, Harris R, Zucca A, Altomare F, Berkley A J, Boothby K, Ejtemaee S, Enderud C, Hoskinson E, Huang S, Ladizinsky E, MacDonald A J R, Marsden G, Molavi R, Oh T, Poulin-Lamarre G, Reis M, Rich C, Sato Y, Tsai N, Volkmann M, Whittaker J D, Yao J, Sandvik A W and Amin M H 2023 Nature 617 61 [54] Kandala A, Temme K, Córcoles A D, Mezzacapo A M C J and Gambetta J M 2019 Nature 567 491 [55] Gold A, Paquette J P, Stockklauser A, Reagor M J, Alam M S, Bestwick A, Didier N, Nersisyan A, Oruc F, Razavi A, Scharmann B, Sete E A, Sur B, Venturelli D, Winkleblack C J, Wudarski F, Harburn M and Rigetti C 2021 NPJ Quantum Information 7 142 [56] Chen C T, Shi Y H, Xiang Z, Wang Z A, Li T M, Sun H Y, He T S, Song X, Zhao S, Zheng D, Xu K and Fan H 2022 Sci. China Phys. Mech. Astron. 65 110362 [57] Johri S, Debnath S, Mocherla A, SINGK A, Prakash A, Kim J and Kerenidis I 2021 NPJ Quantum Information 7 122 [58] Ku H Y, Lambert N, Chan F J, Emary C, Chen Y N and Nori F 2020 npj Quantum Information 6 98 [59] Meitei O R, Gard B T, Barron G S, Pappas D P, Economou S E, Barnes E and Mayhall N J 2021 npj Quantum Information 7 155 [60] Harper R and Flammia S T 2019 Phys. Rev. Lett. 122 080504 [61] Robert A, Barkoutsos P K, Woerner S and Tavernelli I 2021 npj Quantum Information 7 38 [62] Chandarana P D, Baiju A A, Mukherjee S, Das A, Hegade N N and Panigrahi P K 2020 arXiv:2004.04625[quant-ph] [63] Xu K and Fan H 2022 Chin. Phys. B 31 100304 [64] Law J W Z, Kim K H, Shrotriya H and Kwek L C 2022 AAPPS Bull. 32 27 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|