Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090304    DOI: 10.1088/1674-1056/ad6253
Special Issue: SPECIAL TOPIC — Quantum computing and quantum sensing
SPECIAL TOPIC — Quantum computing and quantum sensing Prev   Next  

Delayed-measurement one-way quantum computing on cloud quantum computer

Zhi-Peng Yang(杨智鹏)1,2, Yu-Ran Zhang(张煜然)3, Fu-Li Li(李福利)2, and Heng Fan(范桁)4,1,†
1 Beijing Academy of Quantum Information Science, Beijing 100193, China;
2 Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China;
3 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China;
4 Institute of Physics, China Academy of Sciences, Beijing 100190, China
Abstract  One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes. Recently, a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes. In this work, by considering the delayed-measurement approach, we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform: Quafu. The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol. Since this modified cluster state decreases the number of physical qubits required to implement one-way computation, both the scalability and complexity of the computing process are improved. Compared to previous work, this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements. We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing. Our results suggest that in a noisy intermediate-scale quantum (NISQ) era, the modified method shows a significant advantage for one-way quantum computation.
Keywords:  measurement-based quantum computing      quantum entanglement      quantum gates  
Received:  30 May 2024      Revised:  26 June 2024      Accepted manuscript online:  12 July 2024
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: The authors appreciate Franco Nori for the valuable discussions. Project supported by the National Natural Science Foundation of China (Grant Nos. 92265207 and T2121001) and Beijing Natural Science Foundation (Grant No. Z200009).
Corresponding Authors:  Heng Fan     E-mail:  hfan@iphy.ac.cn

Cite this article: 

Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁) Delayed-measurement one-way quantum computing on cloud quantum computer 2024 Chin. Phys. B 33 090304

[1] Vandersypen L M K and Chuang I L 2005 Rev. Mod. Phys. 76 1037
[2] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[3] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[4] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[5] Li Y, Xin T, Qiu C, Li K, Gangqin L, Li J, Wan Y and Lu D 2023 Fundamental Res. 3 229
[6] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[7] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[8] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[9] Newman M, de Castro L A and Brown K R 2020 Quantum 4 295
[10] Bourassa J E, Alexander R N, Vasmer M, Patil A, Tzitrin I, Matsuura T, Su D, Baragiola B Q, Guha S, Dauphinais G, Sabapathy K K, Menicucci N C and Dhand I 2021 Quantum 5 392
[11] Zwerger M, Briegel H J and Dür W 2013 Phys. Rev. Lett. 110 260503
[12] Ferguson R R, Dellantonio L, Balushi A A, Jansen K, Dür W and Muschik C A 2021 Phys. Rev. Lett. 126 220501
[13] Asavanant W, Shiozawa Y, Yokoyama S, Charoensombutamon B, Emura H, Alexander R N, Takeda S, Yoshikawa J I, Menicucci N C, Yonezawa H and Furusawa A 2019 Science 366 373
[14] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S and Andersen U L 2019 Science 366 369
[15] Zhou Z Y, Gneiting C, You J Q and Nori F 2023 Phys. Rev. A 108 023704
[16] Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005 Nature 434 169
[17] Prevedel R, Walther P, Tiefenbacher F, Böhi P, Kaltenbaek R, Jennewein T and Zeilinger A 2007 Nature 445 65
[18] Tame M S, Prevedel R, Paternostro M, Böhi P, Kim M S and Zeilinger A 2007 Phys. Rev. Lett. 98 140501
[19] Chen K, Li C M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A and Pan J W 2007 Phys. Rev. Lett. 99 120503
[20] Vallone G, Pomarico E, De Martini F and Mataloni P 2008 Phys. Rev. Lett. 100 160502
[21] Kaltenbaek R, Lavoie J, Zeng B, D B S and Resch K J 2010 Nat. Phys. 6 850
[22] Tame M S, Bell B A, Di Franco C, Wadsworth W J and Rarity J G 2014 Phys. Rev. Lett. 113 200501
[23] Lanyon B P, Jurcevic P, Zwerger M, Hempel C, Martinez E A, Dür W, Briegel H J, Blatt R and Roos C F 2013 Phys. Rev. Lett. 111 210501
[24] Ju C, Zhu J, Peng X, Chong B, Zhou X and Du J 2010 Phys. Rev. A 81 012322
[25] Wei T C 2021 Measurement-based quantum computation (Oxford University Press)
[26] Albarrán-Arriagada F, Alvarado Barrios G, Sanz M, Romero G, Lamata L, Retamal J C and Solano E 2018 Phys. Rev. A 97 032320
[27] You J and Nori F 2011 Nature 474 589
[28] Devoret M H, Wallraff A and Martinis J M 2004 arXiv:condmat/0411174
[cond-mat.mes-hall]
[29] Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401
[30] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1
[31] Kockum A F and Nori F 2019 Fundamentals and Frontiers of the Josephson Effect edn. Tafuri (Springer) pp. 703-741
[32] Tanamoto T, Liu Y X, Fujita S, Hu X and Nori F 2006 Phys. Rev. Lett. 97 230501
[33] You J Q, Wang X B, Tanamoto T and Nori F 2007 Phys. Rev. A 75 052319
[34] Tanamoto T, Liu Y X, Hu X and Nori F 2009 Phys. Rev. Lett. 102 100501
[35] Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303
[36] Chen G, Chen Z, Yu L and Liang J 2007 Phys. Rev. A 76 024301
[37] Li Z, Ma S L, Yang Z P, Fang A P, Li P B, Gao S Y and Li F L 2016 Phys. Rev. A 93 042305
[38] Lähteenmäki P, Paraoanu G S, Hassel J and Hakonen P J 2016 Nature Communications 7 12548
[39] Yang Z P, Li Z, Ma S L and Li F L 2017 Phys. Rev. A 96 012327
[40] Wang Y, Li Y, Yin Z Q and Zeng B 2018 npj Quantum Information 4 46
[41] Gong M, Chen M C, Zheng Y, Wang S, Zha C, Deng H, Yan Z, Rong H, Wu Y, Li S, Chen F, Zhao Y, Liang F, Lin J, Xu Y, Guo C, Sun L, Castellano A D, Wang H, Peng C, Lu C Y, Zhu X and Pan J W 2019 Phys. Rev. Lett. 122 110501
[42] Besse J C, Reuer K, Collodo M C, Wulff A, Wernli L, Copetudo A, Malz D, Magnard P, Akin A, Gabureac M, Norris G J, Cirac J I, Wallraff A and Eichler C 2020 Nat. Commun. 11 4877
[43] Shirai S, Zhou Y, Sakata K, Mukai H and Tsai J S 2021 arXiv:2105.08609[quant-ph]
[44] Yang Z P, Ku H Y, Baishya A, Zhang Y R, Kockum A F, Chen Y N, Li F L, Tsai J S and Nori F 2022 Phys. Rev. A 105 042610
[45] Li Y, Wang Z, Bao Z, Wu Y, Wang J, Yang J, Xiong H, Song Y, Zhang H and Duan L 2023 Chip 2 100063
[46] Quafu
[47] Zhao Y Y, Ku H Y, Chen S L, Chen H B, Nori F, Xiang G Y, Li C F, Guo G C and Chen Y N 2020 npj Quantum Inf. 6 77
[48] Ku H Y, Weng H C, Shih Y A, Kuo P C, Lambert N, Nori F, Chuu C S and Chen Y N 2021 Phys. Rev. Res. 3 043083
[49] Ku H Y, Hsieh C Y, Chen S L, Chen Y N and Budroni C 2022 Nat. Commun. 13 4973
[50] Ku H Y, Hsieh C Y and Budroni C 2023 arXiv:2308.02252[quant-ph]
[51] Hsieh C Y, Ku H Y and Budroni C 2023 arXiv:2309.06191[quant-ph]
[52] Albarrán-Arriagada F, Lamata L, Solano E, Romero G and Retamal J C 2018 Phys. Rev. A 97 022306
[53] King A D, Raymond J, Lanting T, Harris R, Zucca A, Altomare F, Berkley A J, Boothby K, Ejtemaee S, Enderud C, Hoskinson E, Huang S, Ladizinsky E, MacDonald A J R, Marsden G, Molavi R, Oh T, Poulin-Lamarre G, Reis M, Rich C, Sato Y, Tsai N, Volkmann M, Whittaker J D, Yao J, Sandvik A W and Amin M H 2023 Nature 617 61
[54] Kandala A, Temme K, Córcoles A D, Mezzacapo A M C J and Gambetta J M 2019 Nature 567 491
[55] Gold A, Paquette J P, Stockklauser A, Reagor M J, Alam M S, Bestwick A, Didier N, Nersisyan A, Oruc F, Razavi A, Scharmann B, Sete E A, Sur B, Venturelli D, Winkleblack C J, Wudarski F, Harburn M and Rigetti C 2021 NPJ Quantum Information 7 142
[56] Chen C T, Shi Y H, Xiang Z, Wang Z A, Li T M, Sun H Y, He T S, Song X, Zhao S, Zheng D, Xu K and Fan H 2022 Sci. China Phys. Mech. Astron. 65 110362
[57] Johri S, Debnath S, Mocherla A, SINGK A, Prakash A, Kim J and Kerenidis I 2021 NPJ Quantum Information 7 122
[58] Ku H Y, Lambert N, Chan F J, Emary C, Chen Y N and Nori F 2020 npj Quantum Information 6 98
[59] Meitei O R, Gard B T, Barron G S, Pappas D P, Economou S E, Barnes E and Mayhall N J 2021 npj Quantum Information 7 155
[60] Harper R and Flammia S T 2019 Phys. Rev. Lett. 122 080504
[61] Robert A, Barkoutsos P K, Woerner S and Tavernelli I 2021 npj Quantum Information 7 38
[62] Chandarana P D, Baiju A A, Mukherjee S, Das A, Hegade N N and Panigrahi P K 2020 arXiv:2004.04625[quant-ph]
[63] Xu K and Fan H 2022 Chin. Phys. B 31 100304
[64] Law J W Z, Kim K H, Shrotriya H and Kwek L C 2022 AAPPS Bull. 32 27
[1] Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红). Chin. Phys. B, 2024, 33(9): 090308.
[2] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[3] Entangling two levitated charged nanospheres through Coulomb interaction
Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦). Chin. Phys. B, 2024, 33(7): 074205.
[4] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[5] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[6] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[7] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[8] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[9] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[10] Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam
Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳). Chin. Phys. B, 2023, 32(10): 100302.
[11] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[12] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[15] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
No Suggested Reading articles found!