Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120309    DOI: 10.1088/1674-1056/ad8a49
SPECIAL TOPIC — Quantum computing and quantum sensing Prev   Next  

M2CS: A microwave measurement and control system for large-scale superconducting quantum processors

Jiawei Zhang(张家蔚)1,2,3,†, Xuandong Sun(孙炫东)1,2,3,4,†, Zechen Guo(郭泽臣)1,2,3, Yuefeng Yuan(袁跃峰)2, Yubin Zhang(张玉斌)2, Ji Chu(储继)2, Wenhui Huang(黄文辉)1,2,3, Yongqi Liang(梁咏棋)1,2,3, Jiawei Qiu(邱嘉威)1,2,3, Daxiong Sun(孙大雄)1,2,3, Ziyu Tao(陶子予)2, Jiajian Zhang(张家健)1,2,3,4, Weijie Guo(郭伟杰)2, Ji Jiang(蒋骥)1,2,3, Xiayu Linpeng(林彭夏雨)2, Yang Liu(刘阳)2, Wenhui Ren(任文慧)2, Jingjing Niu(牛晶晶)2,5, Youpeng Zhong(钟有鹏)1,2,3,5,‡, and Dapeng Yu(俞大鹏)1,2,3,4,5
1 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518048, China;
2 Department of Physics, Southern University of Science and Technology, Shenzhen 518048, China;
3 International Quantum Academy, Shenzhen 518048, China;
4 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518048, China;
5 Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
Abstract  As superconducting quantum computing continues to advance at an unprecedented pace, there is a compelling demand for the innovation of specialized electronic instruments that act as crucial conduits between quantum processors and host computers. Here, we introduce a microwave measurement and control system (M$^{2}$CS) dedicated to large-scale superconducting quantum processors. M$^{2}$CS features a compact modular design that balances overall performance, scalability and flexibility. Electronic tests of M$^{2}$CS show key metrics comparable to commercial instruments. Benchmark tests on transmon superconducting qubits further show qubit coherence and gate fidelities comparable to state-of-the-art results, confirming M$^{2}$CS's capability to meet the stringent requirements of quantum experiments running on intermediate-scale quantum processors. The compact and scalable nature of our design holds the potential to support over 1000 qubits after upgrade in stability and integration. The M$^{2}$CS architecture may also be adopted to a wider range of scenarios, including other quantum computing platforms such as trapped ions and silicon quantum dots, as well as more traditional applications like microwave kinetic inductance detectors and phased array radar systems.
Keywords:  superconducting quantum computation      superconducting qubit      arbitrary waveform generator (AWG)      data acquisition board (DAQ)  
Received:  22 August 2024      Revised:  10 October 2024      Accepted manuscript online:  23 October 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
Fund: This work was supported by the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. KQTD20210811090049034, RCBS20231211090824040, and RCBS20231211090815032), the National Natural Science Foundation of China (Grant Nos. 12174178, 12204228, 12374474, and 123b2071), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301703), the Shenzhen-Hong Kong Cooperation Zone for Technology and Innovation (Grant No. HZQB-KCZYB-2020050), and Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2024A1515011714 and 2022A1515110615).
Corresponding Authors:  Youpeng Zhong     E-mail:  zhongyp@sustech.edu.cn

Cite this article: 

Jiawei Zhang(张家蔚), Xuandong Sun(孙炫东), Zechen Guo(郭泽臣), Yuefeng Yuan(袁跃峰), Yubin Zhang(张玉斌), Ji Chu(储继), Wenhui Huang(黄文辉), Yongqi Liang(梁咏棋), Jiawei Qiu(邱嘉威), Daxiong Sun(孙大雄), Ziyu Tao(陶子予), Jiajian Zhang(张家健), Weijie Guo(郭伟杰), Ji Jiang(蒋骥), Xiayu Linpeng(林彭夏雨), Yang Liu(刘阳), Wenhui Ren(任文慧), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏) M2CS: A microwave measurement and control system for large-scale superconducting quantum processors 2024 Chin. Phys. B 33 120309

[1] Shor P W 1999 SIAM Review 41 303
[2] Grover L K 1997 Phys. Rev. Lett. 79 4709
[3] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A, et al. 2019 Nature 574 505
[4] Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, et al. 2021 Phys. Rev. Lett. 127 180501
[5] Kim Y, Eddins A, Anand S, Wei K X, Van Den Berg E, Rosenblatt S, Nayfeh H, Wu Y, Zaletel M, Temme K, et al. 2023 Nature 618 500
[6] Guo X Y, Li S S, Xiao X, Xiang Z C, Ge Z Y, Li H K, Song P T, Peng Y, Wang Z, Xu K, et al. 2023 Chin. Phys. B 32 010307
[7] Zhao C, He Y, Geng X, He K, Dai G, Liu J and Chen W 2023 Chin. Phys. Lett. 40 010301
[8] Xu S, Sun Z Z, Wang K, Xiang L, Bao Z, Zhu Z, Shen F, Song Z, Zhang P, Ren W, Zhang X, Dong H, Deng J, Chen J, Wu Y, Tan Z, et al. 2023 Chin. Phys. Lett. 40 060301
[9] Jin Y X, Xu H Z, Wang Z A, Zhuang W F, Huang K X, Shi Y H, Ma B G, Li T M, Chen C T, Xu K, Feng Y L, Pei-Liu, Chen M, Li S S, Yang Z P, Qian C, et al. 2024 Chin. Phys. B 33 050301
[10] Bao Z, Xu S, Song Z, Wang K, Xiang L, Zhu Z, Chen J, Jin F, Zhu X, Gao Y, Wu Y, Zhang C, Wang N, Zou Y, Tan Z, Zhang A, Cui Z, Shen F, Zhong J, Li T, Deng J, Zhang X, Dong H, Zhang P, Liu Y R, Zhao L, Hao J, Li H, Wang Z, Song C, Guo Q, Huang B and Wang H 2024 arXiv:2401.08284
[11] Castelvecchi D 2023 Nature 624 238
[12] Google Quantum AI 2023 Nature 614 676
[13] Gupta R S, Sundaresan N, Alexander T, Wood C J, Merkel S T, Healy M B, Hillenbrand M, Jochym-O’Connor T, Wootton J R, Yoder T J, Cross A W, Takita M and Brown B J 2024 Nature 625 259
[14] Ni Z, Li S, Deng X, Cai Y, Zhang L, Wang W, Yang Z B, Yu H, Yan F, Liu S, Zou C L, Sun L, Zheng S B, Xu Y and Yu D 2023 Nature 616 56
[15] Sivak V V, Eickbusch A, Royer B, Singh S, Tsioutsios I, Ganjam S, Miano A, Brock B L, Ding A Z, Frunzio L, Girvin S M, Schoelkopf R J and Devoret M H 2023 Nature 616 50
[16] Acharya R, Aghababaie-Beni L, Aleiner I, Andersen T I, Ansmann M, Arute F, Arya K, Asfaw A, Astrakhantsev N, Atalaya J, et al. 2024 arXiv:2408.13687
[17] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[18] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, et al. 2013 Phys. Rev. Lett. 111 080502
[19] Bardin J C, Sank D, Naaman O and Jeffrey E 2020 IEEE Microwave Magazine 21 24
[20] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[21] Ding C, Di Federico M, Hatridge M, Houck A, Leger S, Martinez J, Miao C, Schuster D I, Stefanazzi L, Stoughton C, Sussman S, Treptow K, Uemura S, Wilcer N, Zhang H, Zhou C and Cancelo G 2023 arXiv:2311.17171 [quant-ph]
[22] Stefanazzi L, Treptow K, Wilcer N, Stoughton C, Bradford C, Uemura S, Zorzetti S, Montella S, Cancelo G, Sussman S, Houck A, Saxena S, Arnaldi H, Agrawal A, Zhang H, Ding C and Schuster D I 2022 Rev. Sci. Instrum. 93 044709
[23] Xu Y, Huang G, Fruitwala N, Rajagopala A, Naik R K, Nowrouzi K, Santiago D I and Siddiqi I 2023 arXiv:2309.10333 [quant-ph]
[24] Xu Y, Huang G, Balewski J, Naik R, Morvan A, Mitchell B, Nowrouzi K, Santiago D I and Siddiqi I 2021 IEEE Transactions on Quantum Engineering 2 1
[25] Guo C, Liang F, Lin J, Xu Y, Sun L, Liu W, Liao S and Peng C 2019 IEEE Transactions on Nuclear Science 66 1222
[26] Lin J, Liang F, Xu Y, Sun L H, Guo C, Liao S K and Peng C Z 2019 AIP Advances 9 115309
[27] Sun L, Liang F, Lin J, Guo C, Xu Y, Liao S and Peng C 2020 IEEE Transactions on Nuclear Science 67 2148
[28] Yang Y, Shen Z, Zhu X, Wang Z, Zhang G, Zhou J, Jiang X, Deng C and Liu S 2022 Rev. Sci. Instrum. 93 074701
[29] Yang Y, Shen Z, Zhu X, Deng C, Liu S and An Q 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) pp. 1
[30] Wang Z, Yu H, Liu R, Ma X, Guo X, Xiang Z, Song P, Su L, Jin Y and Zheng D 2021 Chin. Phys. B 30 110305
[31] Analog Devices 2014 HMC7044 Datasheet and Product InfojAnalog Devices
[32] Xilinx 2018 Zynq-7000 SoC Data Sheet: Overview (DS190)
[33] Analog Devices 2012 AD9739 Datasheet and Product InfojAnalog Devices
[34] Xilinx 2020 7 Series FPGAs Data Sheet: Overview (DS180)
[35] Texas Instruments 2013 ADC08D1020 data sheet, product information and supportjTI.com
[36] Jolin S W, Borgani R, Tholen M O, Forchheimer D and Haviland D B 2020 Rev. Sci. Instrum. 91 124707
[37] Herrmann J, Hellings C, Lazar S, Pfäffli F, Haupt F, Thiele T, Zanuz D C, Norris G J, Heer F, Eichler C, et al. 2022 arXiv:2210.02513 [quantph]
[38] Wu N, Lin J, Xie C, Guo Z, Huang W, Zhang L, Zhou Y, Sun X, Zhang J, Guo W, Linpeng X, Liu S, Liu Y, Ren W, Tao Z, Jiang J, Chu J, Niu J, Zhong Y and Yu D 2024 arXiv:2408.11671 [quant-ph]
[39] Yang X, Chu J, Guo Z, Huang W, Liang Y, Liu J, Qiu J, Sun X, Tao Z, Zhang J, et al. 2024 arXiv:2403.16155 [quant-ph]
[40] Zhu M D, Yan L, Qin X, Zhang W Z, Lin Y and Du J 2023 Chin. Phys. B 32 090702
[41] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M 2022 Nature 601 343
[42] McHugh S, Mazin B A, Serfass B, Meeker S, O’Brien K, Duan R, Raffanti R and Werthimer D 2012 Rev. Sci. Instrum. 83 044702
[1] Diagnosing quantum crosstalk in superconducting quantum chips by using out-of-time-order correlators
Yujia Zhang(张宇佳), Yu Zhang(张钰), Shaoxiong Li(李邵雄), Wen Zheng(郑文), and Yang Yu(于扬). Chin. Phys. B, 2024, 33(11): 110306.
[2] Calibration and cancellation of microwave crosstalk in superconducting circuits
Haisheng Yan(严海生), Shoukuan Zhao(赵寿宽), Zhongcheng Xiang(相忠诚), Ziting Wang(王子婷), Zhaohua Yang(杨钊华), Kai Xu(许凯), Ye Tian(田野), Haifeng Yu(于海峰), Dongning Zheng(郑东宁), Heng Fan(范桁), and Shiping Zhao(赵士平). Chin. Phys. B, 2023, 32(9): 094203.
[3] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[4] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[5] Single-flux-quantum-based qubit control with tunable driving strength
Kuang Liu(刘匡), Yifan Wang(王一凡), Bo Ji(季波), Wanpeng Gao(高万鹏), Zhirong Lin(林志荣), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(12): 128501.
[6] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[7] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[8] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[9] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[10] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[11] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[12] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[13] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[14] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[15] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
No Suggested Reading articles found!