Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110306    DOI: 10.1088/1674-1056/ad73b3
GENERAL Prev   Next  

Diagnosing quantum crosstalk in superconducting quantum chips by using out-of-time-order correlators

Yujia Zhang(张宇佳)1,2,3, Yu Zhang(张钰)1,2,3,†, Shaoxiong Li(李邵雄)1,2,3,4, Wen Zheng(郑文)1,2,3, and Yang Yu(于扬)1,2,3,4
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2 Shishan Laboratory, Suzhou Campus of Nanjing University, Suzhou 215163, China;
3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
4 Hefei National Laboratory, Hefei 230088, China
Abstract  Performance of a scalable quantum processor critically relies on minimizing crosstalk and unwanted interactions within the system, as it is vital for parallel controlled operations on qubits. We present a protocol not only to provide information about residual coupling but also to effectively discriminate it from the influence of classical crosstalk. Our approach utilizes out-of-time-order correlators (OTOCs) as a signal of quantum crosstalk, making it applicable to various coupling forms and scalable architectures. To demonstrate the effectiveness of our protocol, we provide a theoretical analysis and simulate its implementation in coupled superconducting qubits.
Keywords:  superconducting qubit      crosstalk      out-of-time-order correlator (OTOC)  
Received:  11 June 2024      Revised:  19 August 2024      Accepted manuscript online:  27 August 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.Cp (Josephson devices)  
  02.70.-c (Computational techniques; simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074179 and U21A20436), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301702), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BE2021015-1 and BK20232002), and the Natural Science Foundation of Shandong Province (Grant No. ZR2023LZH002).
Corresponding Authors:  Yu Zhang     E-mail:  smutnauq@nju.edu.cn

Cite this article: 

Yujia Zhang(张宇佳), Yu Zhang(张钰), Shaoxiong Li(李邵雄), Wen Zheng(郑文), and Yang Yu(于扬) Diagnosing quantum crosstalk in superconducting quantum chips by using out-of-time-order correlators 2024 Chin. Phys. B 33 110306

[1] Debroy D M, Li M, Huang S and Brown K R 2020 Quantum Sci. Technol. 5 034002
[2] Chen Z, Kelly J, Quintana C, Barends R, Campbell B, Chen Y, Chiaro B, Dunsworth A, Fowler A G, Lucero E, Jeffrey E, Megrant A, Mutus J, Neeley M, Neill C, O’Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Korotkov A N and Martinis J M 2016 Phys. Rev. Lett. 116 020501
[3] Somoroff A, Ficheux Q, Mencia R A, Xiong H, Kuzmin R and Manucharyan V E 2023 Phys. Rev. Lett. 130 267001
[4] Ding L, Hays M, Sung Y, Kannan B, An J, Di Paolo A, Karamlou A H, Hazard T M, Azar K, Kim D K, Niedzielski B M, Melville A, Schwartz M E, Yoder J L, Orlando T P, Gustavsson S, Grover J A, Serniak K and Oliver W D 2023 Phys. Rev. X 13 031035
[5] Negîrneac V, Ali H, Muthusubramanian N, Battistel F, Sagastizabal R, Moreira M S, Marques J F, Vlothuizen W J, Beekman M, Zachariadis C, Haider N, Bruno A and DiCarlo L 2021 Phys. Rev. Lett. 126 220502
[6] Gambetta J M, Córcoles A D, Merkel S T, Johnson B R, Smolin J A, Chow J M, Ryan C A, Rigetti C, Poletto S, Ohki T A, Ketchen M B and Steffen M 2012 Phys. Rev. Lett. 109 240504
[7] Zhao P, Linghu K, Li Z, Xu P, Wang R, Xue G, Jin Y and Yu H 2022 PRX Quantum 3 020301
[8] Zajac D M, Stehlik J, Underwood D L, Phung T, Blair J, Carnevale S, Klaus D, Keefe G A, Carniol A, Kumph M, Steffen M and Dial O E 2021 arXiv:2108.11221
[quant-ph]
[9] Kitaev A Y 2003 Ann. Phys. 303 2
[10] Huang C, Ni X, Zhang F, Newman M, Ding D, Gao X, Wang T, Zhao H H, Wu F, Zhang G, Deng C, Ku H S, Chen J and Shi Y 2020 arXiv:2002.08918
[quant-ph]
[11] Landahl A J, Anderson J T and Rice P R 2011 arXiv:1108.5738
[quantph]
[12] Devitt S J, Munro W J and Nemoto K 2013 Rep. Prog. Phys. 76 076001
[13] Abrams D M, Didier N, Caldwell S A, Johnson B R and Ryan C A 2019 Phys. Rev. Appl. 12 064022
[14] Dai X, Tennant D, Trappen R, Martinez A, Melanson D, Yurtalan M, Tang Y, Novikov S, Grover J, Disseler S, Basham J, Das R, Kim D, Melville A, Niedzielski B, Weber S, Yoder J, Lidar D and Lupascu A 2021 PRX Quantum 2 040313
[15] Nuerbolati W, Han Z, Chu J, Zhou Y, Tan X, Yu Y, Liu S and Yan F 2022 Appl. Phys. Lett. 120 174001
[16] Yan H, Zhao S, Xiang Z, Wang Z, Yang Z, Xu K, Tian Y, Yu H, Zheng D, Fan H, et al. 2023 Chin. Phys. B 32 094203
[17] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Appl. 10 054062
[18] Sete E A, Chen A Q, Manenti R, Kulshreshtha S and Poletto S 2021 Phys. Rev. Appl. 15 064063
[19] Larkin A I and Ovchinnikov Y N 1969 Sov. Phys. JETP 28 1200
[20] Shenker S H and Stanford D 2014 J. High Energy Phys. 2014 67
[21] Jahnke V, Kim K Y and Yoon J 2019 J. High Energy Phys. 2019 37
[22] Huang Y, Zhang Y L and Chen X 2017 Ann. Phys. 529 1600318
[23] Fan R, Zhang P, Shen H and Zhai H 2017 Sci. Bull. 62 707
[24] Daĝ C B and Duan L M 2019 Phys. Rev. A 99 052322
[25] Li J, Fan R, Wang H, Ye B, Zeng B, Zhai H, Peng X and Du J 2017 Phys. Rev. X 7 031011
[26] Wei K X, Ramanathan C and Cappellaro P 2018 Phys. Rev. Lett. 120 070501
[27] Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J and Rey A M 2017 Nat. Phys. 13 781
[28] Zhao S K, Ge Z Y, Xiang Z, Xue G M, Yan H S, Wang Z T, Wang Z, Xu H K, Su F F, Yang Z H, Zhang H, Zhang Y R, Guo X Y, Xu K, Tian Y, Yu H F, Zheng D N, Fan H and Zhao S P 2022 Phys. Rev. Lett. 129 160602
[29] Zhu Q, Sun Z H, Gong M, et al. 2022 Phys. Rev. Lett. 128 160502
[30] Braumüller J, Karamlou A H, Yanay Y, Kannan B, Kim D, Kjaergäärd M, Melville A, Niedzielski B M, Sung Y, Vepsal ainen A, Winik R, Yoder J L, Orlando T P, Gustavsson S, Tahan C and Oliver W D 2022 Nat. Phys. 18 172
[31] Berke C, Varvelis E, Trebst S, Altland A and DiVincenzo D P 2022 Nat. Commun. 13 2495
[32] Mi X, Roushan P, Quintana C, Mandra S, Marshall J, Neill C, Arute F, Arya K, Atalaya J, Babbush R, et al. 2021 Science 374 1479
[33] Swingle B 2018 Nat. Phys. 14 988
[34] Kukuljan I, Grozdanov S C V and Prosen T C V 2017 Phys. Rev. B 96 060301
[35] Rudinger K, Hogle C W, Naik R K, Hashim A, Lobser D, Santiago D I, Grace M D, Nielsen E, Proctor T, Seritan S, Clark S M, Blume-Kohout R, Siddiqi I and Young K C 2021 PRX Quantum 2 040338
[36] McKay D C, Sheldon S, Smolin J A, Chow J M and Gambetta J M 2019 Phys. Rev. Lett. 122 200502
[37] Patterson A, Rahamim J, Tsunoda T, Spring P, Jebari S, Ratter K, Mergenthaler M, Tancredi G, Vlastakis B, Esposito M and Leek P 2019 Phys. Rev. Appl. 12 064013
[38] Wang S T, Deng D L and Duan L M 2015 New J. Phys. 17 093017
[39] Johansson J, Nation P and Nori F 2012 Comput. Phys. Commun. 183 1760
[40] Johansson J, Nation P and Nori F 2013 Comput. Phys. Commun. 184 1234
[41] Lin C J and Motrunich O I 2018 Phys. Rev. B 97 144304
[42] Cheneau M, Barmettler P, Poletti D, Endres M, Schauß P, Fukuhara T, Gross C, Bloch I, Kollath C and Kuhr S 2012 Nature 481 484
[43] Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, et al. 2021 Science 372 948
[44] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[45] Stehlik J, Zajac D M, Underwood D L, Phung T, Blair J, Carnevale S, Klaus D, Keefe G A, Carniol A, Kumph M, Steffen M and Dial O E 2021 Phys. Rev. Lett. 127 080505
[46] Vermersch B, Elben A, Sieberer L M, Yao N Y and Zoller P 2019 Phys. Rev. X 9 021061
[47] Harris J, Yan B and Sinitsyn N A 2022 Phys. Rev. Lett. 129 050602
[1] Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
Minglin Ma(马铭磷), Kangling Xiong(熊康灵), Zhijun Li(李志军), and Shaobo He(贺少波). Chin. Phys. B, 2024, 33(2): 028706.
[2] M2CS: A microwave measurement and control system for large-scale superconducting quantum processors
Jiawei Zhang(张家蔚), Xuandong Sun(孙炫东), Zechen Guo(郭泽臣), Yuefeng Yuan(袁跃峰), Yubin Zhang(张玉斌), Ji Chu(储继), Wenhui Huang(黄文辉), Yongqi Liang(梁咏棋), Jiawei Qiu(邱嘉威), Daxiong Sun(孙大雄), Ziyu Tao(陶子予), Jiajian Zhang(张家健), Weijie Guo(郭伟杰), Ji Jiang(蒋骥), Xiayu Linpeng(林彭夏雨), Yang Liu(刘阳), Wenhui Ren(任文慧), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2024, 33(12): 120309.
[3] Calibration and cancellation of microwave crosstalk in superconducting circuits
Haisheng Yan(严海生), Shoukuan Zhao(赵寿宽), Zhongcheng Xiang(相忠诚), Ziting Wang(王子婷), Zhaohua Yang(杨钊华), Kai Xu(许凯), Ye Tian(田野), Haifeng Yu(于海峰), Dongning Zheng(郑东宁), Heng Fan(范桁), and Shiping Zhao(赵士平). Chin. Phys. B, 2023, 32(9): 094203.
[4] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[5] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[6] Single-flux-quantum-based qubit control with tunable driving strength
Kuang Liu(刘匡), Yifan Wang(王一凡), Bo Ji(季波), Wanpeng Gao(高万鹏), Zhirong Lin(林志荣), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(12): 128501.
[7] Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition
Sheng-Jie Ma(马圣杰), Shi-Long Xu(徐世龙), Xiao Dong(董骁), Xin-Yuan Zhang(张鑫源), You-Long Chen(陈友龙), and Yi-Hua Hu(胡以华). Chin. Phys. B, 2023, 32(10): 104208.
[8] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[9] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[10] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[11] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[12] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[13] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[14] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[15] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
No Suggested Reading articles found!