|
|
Diagnosing quantum crosstalk in superconducting quantum chips by using out-of-time-order correlators |
Yujia Zhang(张宇佳)1,2,3, Yu Zhang(张钰)1,2,3,†, Shaoxiong Li(李邵雄)1,2,3,4, Wen Zheng(郑文)1,2,3, and Yang Yu(于扬)1,2,3,4 |
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; 2 Shishan Laboratory, Suzhou Campus of Nanjing University, Suzhou 215163, China; 3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 4 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract Performance of a scalable quantum processor critically relies on minimizing crosstalk and unwanted interactions within the system, as it is vital for parallel controlled operations on qubits. We present a protocol not only to provide information about residual coupling but also to effectively discriminate it from the influence of classical crosstalk. Our approach utilizes out-of-time-order correlators (OTOCs) as a signal of quantum crosstalk, making it applicable to various coupling forms and scalable architectures. To demonstrate the effectiveness of our protocol, we provide a theoretical analysis and simulate its implementation in coupled superconducting qubits.
|
Received: 11 June 2024
Revised: 19 August 2024
Accepted manuscript online: 27 August 2024
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.Cp
|
(Josephson devices)
|
|
02.70.-c
|
(Computational techniques; simulations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074179 and U21A20436), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301702), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BE2021015-1 and BK20232002), and the Natural Science Foundation of Shandong Province (Grant No. ZR2023LZH002). |
Corresponding Authors:
Yu Zhang
E-mail: smutnauq@nju.edu.cn
|
Cite this article:
Yujia Zhang(张宇佳), Yu Zhang(张钰), Shaoxiong Li(李邵雄), Wen Zheng(郑文), and Yang Yu(于扬) Diagnosing quantum crosstalk in superconducting quantum chips by using out-of-time-order correlators 2024 Chin. Phys. B 33 110306
|
[1] Debroy D M, Li M, Huang S and Brown K R 2020 Quantum Sci. Technol. 5 034002 [2] Chen Z, Kelly J, Quintana C, Barends R, Campbell B, Chen Y, Chiaro B, Dunsworth A, Fowler A G, Lucero E, Jeffrey E, Megrant A, Mutus J, Neeley M, Neill C, O’Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Korotkov A N and Martinis J M 2016 Phys. Rev. Lett. 116 020501 [3] Somoroff A, Ficheux Q, Mencia R A, Xiong H, Kuzmin R and Manucharyan V E 2023 Phys. Rev. Lett. 130 267001 [4] Ding L, Hays M, Sung Y, Kannan B, An J, Di Paolo A, Karamlou A H, Hazard T M, Azar K, Kim D K, Niedzielski B M, Melville A, Schwartz M E, Yoder J L, Orlando T P, Gustavsson S, Grover J A, Serniak K and Oliver W D 2023 Phys. Rev. X 13 031035 [5] Negîrneac V, Ali H, Muthusubramanian N, Battistel F, Sagastizabal R, Moreira M S, Marques J F, Vlothuizen W J, Beekman M, Zachariadis C, Haider N, Bruno A and DiCarlo L 2021 Phys. Rev. Lett. 126 220502 [6] Gambetta J M, Córcoles A D, Merkel S T, Johnson B R, Smolin J A, Chow J M, Ryan C A, Rigetti C, Poletto S, Ohki T A, Ketchen M B and Steffen M 2012 Phys. Rev. Lett. 109 240504 [7] Zhao P, Linghu K, Li Z, Xu P, Wang R, Xue G, Jin Y and Yu H 2022 PRX Quantum 3 020301 [8] Zajac D M, Stehlik J, Underwood D L, Phung T, Blair J, Carnevale S, Klaus D, Keefe G A, Carniol A, Kumph M, Steffen M and Dial O E 2021 arXiv:2108.11221 [quant-ph] [9] Kitaev A Y 2003 Ann. Phys. 303 2 [10] Huang C, Ni X, Zhang F, Newman M, Ding D, Gao X, Wang T, Zhao H H, Wu F, Zhang G, Deng C, Ku H S, Chen J and Shi Y 2020 arXiv:2002.08918[quant-ph] [11] Landahl A J, Anderson J T and Rice P R 2011 arXiv:1108.5738 [quantph] [12] Devitt S J, Munro W J and Nemoto K 2013 Rep. Prog. Phys. 76 076001 [13] Abrams D M, Didier N, Caldwell S A, Johnson B R and Ryan C A 2019 Phys. Rev. Appl. 12 064022 [14] Dai X, Tennant D, Trappen R, Martinez A, Melanson D, Yurtalan M, Tang Y, Novikov S, Grover J, Disseler S, Basham J, Das R, Kim D, Melville A, Niedzielski B, Weber S, Yoder J, Lidar D and Lupascu A 2021 PRX Quantum 2 040313 [15] Nuerbolati W, Han Z, Chu J, Zhou Y, Tan X, Yu Y, Liu S and Yan F 2022 Appl. Phys. Lett. 120 174001 [16] Yan H, Zhao S, Xiang Z, Wang Z, Yang Z, Xu K, Tian Y, Yu H, Zheng D, Fan H, et al. 2023 Chin. Phys. B 32 094203 [17] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Appl. 10 054062 [18] Sete E A, Chen A Q, Manenti R, Kulshreshtha S and Poletto S 2021 Phys. Rev. Appl. 15 064063 [19] Larkin A I and Ovchinnikov Y N 1969 Sov. Phys. JETP 28 1200 [20] Shenker S H and Stanford D 2014 J. High Energy Phys. 2014 67 [21] Jahnke V, Kim K Y and Yoon J 2019 J. High Energy Phys. 2019 37 [22] Huang Y, Zhang Y L and Chen X 2017 Ann. Phys. 529 1600318 [23] Fan R, Zhang P, Shen H and Zhai H 2017 Sci. Bull. 62 707 [24] Daǧ C B and Duan L M 2019 Phys. Rev. A 99 052322 [25] Li J, Fan R, Wang H, Ye B, Zeng B, Zhai H, Peng X and Du J 2017 Phys. Rev. X 7 031011 [26] Wei K X, Ramanathan C and Cappellaro P 2018 Phys. Rev. Lett. 120 070501 [27] Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J and Rey A M 2017 Nat. Phys. 13 781 [28] Zhao S K, Ge Z Y, Xiang Z, Xue G M, Yan H S, Wang Z T, Wang Z, Xu H K, Su F F, Yang Z H, Zhang H, Zhang Y R, Guo X Y, Xu K, Tian Y, Yu H F, Zheng D N, Fan H and Zhao S P 2022 Phys. Rev. Lett. 129 160602 [29] Zhu Q, Sun Z H, Gong M, et al. 2022 Phys. Rev. Lett. 128 160502 [30] Braumüller J, Karamlou A H, Yanay Y, Kannan B, Kim D, Kjaergaard M, Melville A, Niedzielski B M, Sung Y, Vepsäläinen A, Winik R, Yoder J L, Orlando T P, Gustavsson S, Tahan C and Oliver W D 2022 Nat. Phys. 18 172 [31] Berke C, Varvelis E, Trebst S, Altland A and DiVincenzo D P 2022 Nat. Commun. 13 2495 [32] Mi X, Roushan P, Quintana C, Mandra S, Marshall J, Neill C, Arute F, Arya K, Atalaya J, Babbush R, et al. 2021 Science 374 1479 [33] Swingle B 2018 Nat. Phys. 14 988 [34] Kukuljan I, Grozdanov S C V and Prosen T C V 2017 Phys. Rev. B 96 060301 [35] Rudinger K, Hogle C W, Naik R K, Hashim A, Lobser D, Santiago D I, Grace M D, Nielsen E, Proctor T, Seritan S, Clark S M, Blume-Kohout R, Siddiqi I and Young K C 2021 PRX Quantum 2 040338 [36] McKay D C, Sheldon S, Smolin J A, Chow J M and Gambetta J M 2019 Phys. Rev. Lett. 122 200502 [37] Patterson A, Rahamim J, Tsunoda T, Spring P, Jebari S, Ratter K, Mergenthaler M, Tancredi G, Vlastakis B, Esposito M and Leek P 2019 Phys. Rev. Appl. 12 064013 [38] Wang S T, Deng D L and Duan L M 2015 New J. Phys. 17 093017 [39] Johansson J, Nation P and Nori F 2012 Comput. Phys. Commun. 183 1760 [40] Johansson J, Nation P and Nori F 2013 Comput. Phys. Commun. 184 1234 [41] Lin C J and Motrunich O I 2018 Phys. Rev. B 97 144304 [42] Cheneau M, Barmettler P, Poletti D, Endres M, Schauß P, Fukuhara T, Gross C, Bloch I, Kollath C and Kuhr S 2012 Nature 481 484 [43] Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, et al. 2021 Science 372 948 [44] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 [45] Stehlik J, Zajac D M, Underwood D L, Phung T, Blair J, Carnevale S, Klaus D, Keefe G A, Carniol A, Kumph M, Steffen M and Dial O E 2021 Phys. Rev. Lett. 127 080505 [46] Vermersch B, Elben A, Sieberer L M, Yao N Y and Zoller P 2019 Phys. Rev. X 9 021061 [47] Harris J, Yan B and Sinitsyn N A 2022 Phys. Rev. Lett. 129 050602 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|