ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Calibration and cancellation of microwave crosstalk in superconducting circuits |
Haisheng Yan(严海生)1,2, Shoukuan Zhao(赵寿宽)3, Zhongcheng Xiang(相忠诚)1, Ziting Wang(王子婷)1,2, Zhaohua Yang(杨钊华)1,2, Kai Xu(许凯)1,2,4,†, Ye Tian(田野)1, Haifeng Yu(于海峰)3,4, Dongning Zheng(郑东宁)1,2,4,5,6, Heng Fan(范桁)1,2,4,5,6, and Shiping Zhao(赵士平)1,2,4,5,6 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100190, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 4 Hefei National Laboratory, Hefei 230088, China; 5 CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100190, China; 6 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract The precise control and manipulation of the qubit state are vital for quantum simulation and quantum computation. In superconducting circuits, one notorious error comes from the crosstalk of microwave signals applied to different qubit control lines. In this work, we present a method for the calibration and cancellation of the microwave crosstalk and experimentally demonstrate its effectiveness in a superconducting 10-qubit chain. The method is convenient and efficient especially for calibrating the microwave crosstalk with large amplitudes and variations, which can be performed successively to reduce the microwave crosstalk by two to three orders. The qubit chain with microwave driving is governed by one-dimensional (1D) Bose-Hubbard model in transverse field, which is nonintegrable and shows thermalization behaviour during the time evolution from certain initial states. Such thermalization process is observed with excellent agreement between experiment and theory further confirming the effective global cancellation of the microwave crosstalk.
|
Received: 06 April 2023
Revised: 31 May 2023
Accepted manuscript online: 07 June 2023
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
05.30.Jp
|
(Boson systems)
|
|
85.25.Cp
|
(Josephson devices)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2018B030326001) and the National Natural Science Foundation of China (Grant No. 11874063). H F Yu acknowledges supports from the Natural Science Foundation of Beijing (Grant No. Z190012) and the National Natural Science Foundation of China (Grant No. 11890704). H Fan acknowledges supports from the National Natural Science Foundation of China (Grant Nos. 11934018 and T2121001), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000), and Beijing Natural Science Foundation (Grant No. Z200009). |
Corresponding Authors:
Kai Xu
E-mail: kaixu@iphy.ac.cn
|
Cite this article:
Haisheng Yan(严海生), Shoukuan Zhao(赵寿宽), Zhongcheng Xiang(相忠诚), Ziting Wang(王子婷), Zhaohua Yang(杨钊华), Kai Xu(许凯), Ye Tian(田野), Haifeng Yu(于海峰), Dongning Zheng(郑东宁), Heng Fan(范桁), and Shiping Zhao(赵士平) Calibration and cancellation of microwave crosstalk in superconducting circuits 2023 Chin. Phys. B 32 094203
|
[1] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318 [2] Altman E, Brown K R, Carleo G, et al. 2021 PRX Quantum 2 017003 [3] Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N and Zoller P 2022 Nature 607 667 [4] Roushan P, Neill C, Tangpanitanon J, Bastidas V M, Megrant A, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A, Foxen B, Giustina M, Jeffrey E, Kelly J, Lucero E, Mutus J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Neven H, Angelakis D G and Martinis J 2017 Science 358 1175 [5] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N and Fan H 2018 Phys. Rev. Lett. 120 050507 [6] Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X and Pan J W 2019 Science 364 753 [7] Xu K, Sun Z H, Liu W X, Zhang Y R, Li H K, Dong H, Ren W H, Zhang P F, Nori F, Zheng D N, Fan H and Wang H 2020 Sci. Adv. 6 (25) eaba4935 [8] Chen F, Sun Z H, Gong M, Zhu Q L, Zhang Y R, Wu Y, Ye Y, Zha C, Li S, Guo S, Qian H, Huang H L, Yu J, Deng H, Rong H, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Peng C Z, Fan H, Zhu X B and Pan J W 2021 Phys. Rev. Lett. 127 020602 [9] Braumüller J, Karamlou A H, Yanay Y, Kannan B, Kim D, Kjaergaard M, Melville A, Niedzielski B M, Sung Y, Vepsäläinen A, Winik R, Yoder J L, Orlando T P, Gustavsson S, Tahan C and Oliver W D 2022 Nat. Phys. 18 172 [10] Karamlou A H, Braumüller J, Yanay Y, Paolo A D, Harrington P M, Kannan B, Kim D, Kjaergaard M, Melville A, Muschinske S, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Schwartz M, Tahan C, Orlando T P, Gustavsson, S and Oliver W D 2022 npj Quantum Inf. 8 35 [11] Zhao S K, Ge Z Y, Xiang Z, Xue G M, Yan H S, Wang Z T, Wang Z, Xu H K, Su F F, Yang Z H, Zhang H, Zhang Y R, Guo X Y, Xu K, Tian Y, Yu H F, Zheng D N, Fan H and Zhao S P 2022 Phys. Rev. Lett. 129 160602 [12] Zhu Q, Sun Z H, Gong M, Chen F, Zhang Y R, Wu Y, Ye Y, Zha C, Li S, Guo S, Qian H, Huang H L, Yu J, Deng H, Rong H, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Peng C Z, Fan H, Zhu X B and Pan J W 2022 Phys. Rev. Lett. 128 160502 [13] Li X G, Xu H K, Wang J H, Tang L Z, Zhang D W, Yang C H, Su T, Wang C L, Mi Z Y, Sun W J, Liang X H, Chen M, Li C Y, Zhang Y S, Linghu K H, Han J X, Liu W Y, Feng Y L, Liu P, Xue G M, Zhang J N, Jin Y R, Zhu S L, Yu H F and Xue Q K 2023 arXiv: 2301.12138 [14] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505 [15] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501 [16] Nuerbolati W, Han Z K, Chu J, Zhou Y X, Tan X S, Yu Y, Liu S and Yan F 2022 Appl. Phys. Lett. 120 174001 [17] Sung Y, Ding L, Braumüller J, Vepsäläinen A, Kannan B, Kjaergaard M, Greene A, Samach G O, McNally C, Kim D, Melville A, Niedzielski B M, Schwartz M E, Yoder J L, Orlando T P, Gustavsson S and Oliver W D 2021 Phys. Rev. X 11 021058 [18] Wang R X, Zhao P and Jin Y R and Yu H F 2022 Appl. Phys. Lett. 121 152602 [19] Yan H S, Wang Y Y, Zhao S K, Yang Z H, Wang Z T, Xu K, Tian Y, Yu H F, Fan H and Zhao S P 2023 arXiv: 2302.05169 [20] Bañuls M C, Cirac J I and Hastings M B} 2011 Phys. Rev. Lett. 106 050405 [21] Patterson A D, Rahamim J, Tsunoda T, Spring P A, Jebari S, Ratter K, Mergenthaler M, Tancredi G, Vlastakis B, Esposito M and Leek P J 2019 Phys. Rev. Appl. 12 064013 [22] Zhao P, Linghu K H, Li Z Y, Xu P, Wang R, Xue G, Jin Y R and Yu H F 2022 PRX Quantum 3 020301 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|