Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 094203    DOI: 10.1088/1674-1056/acdc10
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Calibration and cancellation of microwave crosstalk in superconducting circuits

Haisheng Yan(严海生)1,2, Shoukuan Zhao(赵寿宽)3, Zhongcheng Xiang(相忠诚)1, Ziting Wang(王子婷)1,2, Zhaohua Yang(杨钊华)1,2, Kai Xu(许凯)1,2,4,†, Ye Tian(田野)1, Haifeng Yu(于海峰)3,4, Dongning Zheng(郑东宁)1,2,4,5,6, Heng Fan(范桁)1,2,4,5,6, and Shiping Zhao(赵士平)1,2,4,5,6
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100190, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
4 Hefei National Laboratory, Hefei 230088, China;
5 CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100190, China;
6 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The precise control and manipulation of the qubit state are vital for quantum simulation and quantum computation. In superconducting circuits, one notorious error comes from the crosstalk of microwave signals applied to different qubit control lines. In this work, we present a method for the calibration and cancellation of the microwave crosstalk and experimentally demonstrate its effectiveness in a superconducting 10-qubit chain. The method is convenient and efficient especially for calibrating the microwave crosstalk with large amplitudes and variations, which can be performed successively to reduce the microwave crosstalk by two to three orders. The qubit chain with microwave driving is governed by one-dimensional (1D) Bose-Hubbard model in transverse field, which is nonintegrable and shows thermalization behaviour during the time evolution from certain initial states. Such thermalization process is observed with excellent agreement between experiment and theory further confirming the effective global cancellation of the microwave crosstalk.
Keywords:  superconducting qubit      microwave crosstalk      Rabi oscillation  
Received:  06 April 2023      Revised:  31 May 2023      Accepted manuscript online:  07 June 2023
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Lx (Quantum computation architectures and implementations)  
  05.30.Jp (Boson systems)  
  85.25.Cp (Josephson devices)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2018B030326001) and the National Natural Science Foundation of China (Grant No. 11874063). H F Yu acknowledges supports from the Natural Science Foundation of Beijing (Grant No. Z190012) and the National Natural Science Foundation of China (Grant No. 11890704). H Fan acknowledges supports from the National Natural Science Foundation of China (Grant Nos. 11934018 and T2121001), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000), and Beijing Natural Science Foundation (Grant No. Z200009).
Corresponding Authors:  Kai Xu     E-mail:  kaixu@iphy.ac.cn

Cite this article: 

Haisheng Yan(严海生), Shoukuan Zhao(赵寿宽), Zhongcheng Xiang(相忠诚), Ziting Wang(王子婷), Zhaohua Yang(杨钊华), Kai Xu(许凯), Ye Tian(田野), Haifeng Yu(于海峰), Dongning Zheng(郑东宁), Heng Fan(范桁), and Shiping Zhao(赵士平) Calibration and cancellation of microwave crosstalk in superconducting circuits 2023 Chin. Phys. B 32 094203

[1] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[2] Altman E, Brown K R, Carleo G, et al. 2021 PRX Quantum 2 017003
[3] Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N and Zoller P 2022 Nature 607 667
[4] Roushan P, Neill C, Tangpanitanon J, Bastidas V M, Megrant A, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A, Foxen B, Giustina M, Jeffrey E, Kelly J, Lucero E, Mutus J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Neven H, Angelakis D G and Martinis J 2017 Science 358 1175
[5] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N and Fan H 2018 Phys. Rev. Lett. 120 050507
[6] Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X and Pan J W 2019 Science 364 753
[7] Xu K, Sun Z H, Liu W X, Zhang Y R, Li H K, Dong H, Ren W H, Zhang P F, Nori F, Zheng D N, Fan H and Wang H 2020 Sci. Adv. 6 (25) eaba4935
[8] Chen F, Sun Z H, Gong M, Zhu Q L, Zhang Y R, Wu Y, Ye Y, Zha C, Li S, Guo S, Qian H, Huang H L, Yu J, Deng H, Rong H, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Peng C Z, Fan H, Zhu X B and Pan J W 2021 Phys. Rev. Lett. 127 020602
[9] Braumüller J, Karamlou A H, Yanay Y, Kannan B, Kim D, Kjaergaard M, Melville A, Niedzielski B M, Sung Y, Vepsäläinen A, Winik R, Yoder J L, Orlando T P, Gustavsson S, Tahan C and Oliver W D 2022 Nat. Phys. 18 172
[10] Karamlou A H, Braumüller J, Yanay Y, Paolo A D, Harrington P M, Kannan B, Kim D, Kjaergaard M, Melville A, Muschinske S, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Schwartz M, Tahan C, Orlando T P, Gustavsson, S and Oliver W D 2022 npj Quantum Inf. 8 35
[11] Zhao S K, Ge Z Y, Xiang Z, Xue G M, Yan H S, Wang Z T, Wang Z, Xu H K, Su F F, Yang Z H, Zhang H, Zhang Y R, Guo X Y, Xu K, Tian Y, Yu H F, Zheng D N, Fan H and Zhao S P 2022 Phys. Rev. Lett. 129 160602
[12] Zhu Q, Sun Z H, Gong M, Chen F, Zhang Y R, Wu Y, Ye Y, Zha C, Li S, Guo S, Qian H, Huang H L, Yu J, Deng H, Rong H, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Peng C Z, Fan H, Zhu X B and Pan J W 2022 Phys. Rev. Lett. 128 160502
[13] Li X G, Xu H K, Wang J H, Tang L Z, Zhang D W, Yang C H, Su T, Wang C L, Mi Z Y, Sun W J, Liang X H, Chen M, Li C Y, Zhang Y S, Linghu K H, Han J X, Liu W Y, Feng Y L, Liu P, Xue G M, Zhang J N, Jin Y R, Zhu S L, Yu H F and Xue Q K 2023 arXiv: 2301.12138
[14] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[15] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501
[16] Nuerbolati W, Han Z K, Chu J, Zhou Y X, Tan X S, Yu Y, Liu S and Yan F 2022 Appl. Phys. Lett. 120 174001
[17] Sung Y, Ding L, Braumüller J, Vepsäläinen A, Kannan B, Kjaergaard M, Greene A, Samach G O, McNally C, Kim D, Melville A, Niedzielski B M, Schwartz M E, Yoder J L, Orlando T P, Gustavsson S and Oliver W D 2021 Phys. Rev. X 11 021058
[18] Wang R X, Zhao P and Jin Y R and Yu H F 2022 Appl. Phys. Lett. 121 152602
[19] Yan H S, Wang Y Y, Zhao S K, Yang Z H, Wang Z T, Xu K, Tian Y, Yu H F, Fan H and Zhao S P 2023 arXiv: 2302.05169
[20] Bañuls M C, Cirac J I and Hastings M B} 2011 Phys. Rev. Lett. 106 050405
[21] Patterson A D, Rahamim J, Tsunoda T, Spring P A, Jebari S, Ratter K, Mergenthaler M, Tancredi G, Vlastakis B, Esposito M and Leek P J 2019 Phys. Rev. Appl. 12 064013
[22] Zhao P, Linghu K H, Li Z Y, Xu P, Wang R, Xue G, Jin Y R and Yu H F 2022 PRX Quantum 3 020301
[1] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[2] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[3] Single-flux-quantum-based qubit control with tunable driving strength
Kuang Liu(刘匡), Yifan Wang(王一凡), Bo Ji(季波), Wanpeng Gao(高万鹏), Zhirong Lin(林志荣), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(12): 128501.
[4] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[5] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[6] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[7] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[8] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[9] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[10] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[11] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[12] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[13] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
[14] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[15] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
No Suggested Reading articles found!