Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 124202    DOI: 10.1088/1674-1056/ad8cbd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical image watermarking based on orbital angular momentum holography

Jialong Zhu(朱家龙)1,2,†, Jiaying Ji(季佳滢)1, Le Wang(王乐)1, and Shengmei Zhao(赵生妹)1,3,‡
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 School of Information Engineering, Suqian University, Suqian 223800, China;
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We propose an optical image watermarking scheme based on orbital angular momentum (OAM) holography. Multiple topological charges (TCs, $l$) of OAM, as multiple cryptographic sub-keys, are embedded into the host image along with the watermark information. Moreover, the Arnold transformation is employed to further enhance the security and the scrambling time ($m$) is also served as another cryptographic key. The watermark image is embedded into the host image by using the discrete wavelet transformation (DWT) and singular value decomposition (SVD) methods. Importantly, the interference image is utilized to further enhance security. The imperceptibility of our proposed method is analyzed by using the peak signal-to-noise ratio (PSNR) and the histogram of the watermarked host image. To demonstrate robustness, a series of attack tests, including Gaussian noise, Poisson noise, salt-and-pepper noise, JPEG compression, Gaussian low-pass filtering, cropping, and rotation, are conducted. The experimental results show that our proposed method has advanced security, imperceptibility, and robustness, making it a promising option for optical image watermarking applications.
Keywords:  optical image watermarking      orbital angular momentum      holography      discrete wavelet transformation  
Received:  31 August 2024      Revised:  21 October 2024      Accepted manuscript online:  30 October 2024
PACS:  42.40.Jv (Computer-generated holograms)  
  42.30.-d (Imaging and optical processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62375140), the Natural Science Foundation of Suqian, Jiangsu Province, China (Grant No. S202108), the Open Research Fund of the National Laboratory of Solid State Microstructures (Grant No. M36055), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21-0745).
Corresponding Authors:  Jialong Zhu, Shengmei Zhao     E-mail:  zjl@squ.edu.cn;zhaosm@njupt.edu.cn

Cite this article: 

Jialong Zhu(朱家龙), Jiaying Ji(季佳滢), Le Wang(王乐), and Shengmei Zhao(赵生妹) Optical image watermarking based on orbital angular momentum holography 2024 Chin. Phys. B 33 124202

[1] Feng X F, Jiang M R, Zhang H and Wang C P 2024 Journal of the Franklin Institute 361 319
[2] Zhou N R, Tong L J and Zou W P 2023 Signal Processing 211 109107
[3] Ye G D, Wu H S, Liu M and Huang X L 2023 Chaos, Solitons & Fractals 171 113469
[4] Rieyan S A, NewsMR K, Rahman A M, Khan S A, Zaarif S T J, Alam M G R, Hassan M M, Lanni M and Fortino G 2024 Information Fusion 102 102004
[5] Zhou N R, Hu L L, Huang Z W, Wang M M and Luo G S 2024 Expert Systems with Applications 238 122052
[6] Gong L H and Luo H X 2023 Optics & Laser Technology 167 109665
[7] Liang Q and Zhu C X 2023 Optics & Laser Technology 160 109033
[8] Sui L S, Zhang X, Huang C T, Tian A L and Anand Krishna A 2019 Optics and Lasers in Engineering 113 29
[9] Sui L S, Xin M T and Tian A L 2013 Opt. Lett. 38 1996
[10] Takai N and Mifune Y 2002 Appl. Opt. 41 865
[11] Kishk S and Javidi B 2003 Opt. Lett. 28 167
[12] Zhao N X, Li Z L, Zhu G D, Li J X, Deng L G, Dai Q, Zhang W G, He Z X and Zheng G X 2022 Opt. Express 30 37554
[13] Jiao S M, Zhou C Y, Shi Y S, Zou W B and Li X 2019 Optics & Laser Technology 109 370
[14] Shao W D, Huang D M, Li H Y, Deng L, Yang Q, Dai X X, Liu D M and Cheng M F 2023 Journal of Lightwave Technology 41 4941
[15] Ye Z Y, Qiu P H,Wang H B, Xiong J andWang K G 2019 Opt. Express 27 36505
[16] Xiao D, Li XW,Wang D,Wang Y andWang Q H 2019 Opt. Commun. 453 124340
[17] Chen Y Y,Wang J H, Lin C C and Hwang H E 2013 Appl. Opt. 52 5247
[18] Jiao S M, Zhang D F, Zhang C L, Gao Y, Lei T and Yuan X C 2021 Optics and Lasers in Engineering 138 106455
[19] Chen Y Y, Zhou X, Xiao Y L, Yuan S andWu X L 2010 Optics & Laser Technology 42 617
[20] Sui L S, Cheng Y, Tian A L and Anand Krishna A 2018 Optics and Lasers in Engineering 107 38
[21] Guo X Y, Zhong J Z, Li B J, Qi S X, Li Y, Li P, Wen D D, Liu S, Wei B Y and Zhao J L 2022 Adv. Mater. 34 2103192
[22] Fang X Y, Ren H R and Gu M 2020 Nat. Photon. 14 102
[23] Ren H R, Fang X Y, Jang J, Bürger J, Rho J and Maier S A 2020 Nat. Nanotechnol. 15 948
[24] Zhu J L, Wang L and Zhao S M 2022 IEEE Photon. Technol. Lett. 35 179
[25] Olaleye T M, Ribeiro P A and Raposo M 2023 Photonics 10 664
[26] Trichili A, Rosales-Guzmán C, Dudley A, Ndagano B, Ben Salem A, Zghal M and Forbes A 2016 Sci. Rep. 6 27674
[27] Zhou H Q,Wang Y T, Li X, Xu Z T, Li XWand Huang L L 2021 Appl. Phys. Lett. 119 044104
[28] Zhu J L, Wang L, Ji J Y and Zhao S M 2022 Appl. Phys. Lett. 120 251104
[29] Dong J T, Tian Z P, Wang S, Xie L Y, Li Y Y and Zhao E X 2023 Opt. Lett. 48 2018
[30] Pi D P, Liu J and Wang Y T 2022 Light: Science & Applications 11 231
[31] Meng W J, Pi D P, Li B L, Luan H T, Gu M and Fang X Y 2024 Laser & Photonics Reviews 18 2301258
[32] Elayan M A and Ahmad M O 2016 International Conference on Image and Signal Processing, May 7 2016, p. 317
[33] Wang S Q, Meng X F, Yin Y K, Wang Y R, Yang X L, Zhang X, Peng X, He W Q, Dong G Y and Chen H Y 2019 Optics and Lasers in Engineering 114 76
[34] Qu G, Meng X F, Yang X L, Wu H Z, Wang P W, He W Q and Chen H Y 2021 Optics and Lasers in Engineering 137 106376
[1] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
[2] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[3] Accelerated generation of holograms with ultra-low memory symmetrically high-compressed look-up table
Yan Yang(杨燕), Jianying Zhu(朱建英), Minyuan Sun(孙敏远), and Yong Bi(毕勇). Chin. Phys. B, 2024, 33(4): 044201.
[4] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[5] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[6] Deep-learning-assisted optical communication with discretized state space of structured light
Minyang Zhang(张敏洋), Dong-Xu Chen(陈东旭), Pengxiang Ruan(阮鹏祥), Jun Liu(刘俊), Dong-Zhi Fu(付栋之), Jun-Long Zhao(赵军龙), and Chui-Ping Yang(杨垂平). Chin. Phys. B, 2024, 33(12): 120304.
[7] Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum
Longfei Guo(郭龙飞), Bing Zha(查兵), Xiaoqiao Sun(孙晓乔), Songmei Ni(倪松梅), Ruiyu Huang(黄瑞玉), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2024, 33(11): 117501.
[8] Bessel—Gaussian beam-based orbital angular momentum holography
Jiaying Ji(季佳滢), Zhigang Zheng(郑志刚), Jialong Zhu(朱家龙), Le Wang(王乐), Xinguang Wang(王新光), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(1): 014204.
[9] Extension of sound field reconstruction based on element radiation superposition method in a sparsity framework
Yuan Gao(高塬), Bo-Quan Yang(杨博全), Sheng-Guo Shi(时胜国), and Hao-Yang Zhang(张昊阳). Chin. Phys. B, 2023, 32(4): 044302.
[10] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[11] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[12] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[13] Multi-channel generation of vortex beams with controllable polarization states and orbital angular momentum
Ziyao Lyu(吕子瑶), Pan Wang(王潘), and Changshun Wang(王长顺). Chin. Phys. B, 2023, 32(12): 124209.
[14] Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum
Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124210.
[15] Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
Hong Liang(梁红), Haoyuan Song(宋浩元), Yubo Li(李宇博), Di Yu(于迪), and Shufang Fu(付淑芳). Chin. Phys. B, 2023, 32(12): 124212.
No Suggested Reading articles found!