Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 124203    DOI: 10.1088/1674-1056/ad71b4
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Bright soliton dynamics for resonant nonlinear Schrödinger equation with generalized cubic-quintic nonlinearity

Keyu Bao(鲍柯宇), Xiaogang Tang(唐晓刚), and Ying Wang(王颖)†
School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Abstract  For systems modeled by the resonant nonlinear Schrödinger equation (RNLSE) with generalized cubic-quintic nonlinearity, we derive the bright soliton solution of the equation in (1+1) dimensions, using the modified $F$-expansion method along with the novel ansatz of $F$-base function. Furthermore, we extend the analytical study of soliton dynamics to higher (2+1) and (3+1) dimensions by using the self-similar method, and demonstrate the soliton behavior via graphical illustration. Moreover, we investigate the effect of the resonance term on bright soliton solution in (1+1) dimensions. Additionally, we consider the nonlinear equation models with perturbation terms and derive the bright soliton solutions for the one-dimensional (1D) to three-dimensional (3D) cases. The theoretical results derived can be used to guide the experimental studies and observations of bright solitons in systems described by RNLSE model.
Keywords:  soliton      resonant nonlinear Schrödinger equation      $F$-expansion method  
Received:  09 July 2024      Revised:  20 August 2024      Accepted manuscript online:  21 August 2024
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  02.30.Jr (Partial differential equations)  
  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11547024).
Corresponding Authors:  Ying Wang     E-mail:  wangying@just.edu.cn

Cite this article: 

Keyu Bao(鲍柯宇), Xiaogang Tang(唐晓刚), and Ying Wang(王颖) Bright soliton dynamics for resonant nonlinear Schrödinger equation with generalized cubic-quintic nonlinearity 2024 Chin. Phys. B 33 124203

[1] Chen J and Yan Q 2020 Nonlinear Dyn. 100 2807
[2] Zhao X H 2021 Appl. Math. Lett. 121 107383
[3] Zhou Q, et al. 2022 Chin. Phys. Lett. 39 044202
[4] Arshad M, Seadawy A R and Lu D 2018 Optical and Quantum Electronics 50 1
[5] Hao R, Li L, Li Z, et al. 2004 Opt. Commun. 236 79
[6] Li B 2005 Int. J. Mod. Phys. C 16 1225
[7] Xiao Z J, Tian B, Wu X Y, et al. 2017 Mod. Phys. Lett. B 31 1750130
[8] Wang Y, Li S, Guo J, et al. 2016 Mathematical Methods in the Applied Science 39 5770
[9] Serkin V N and Hasegawa A 2000 Phys. Rev. Lett. 85 4502
[10] Vahidi J, Zabihi A, Rezazadeh H, et al. 2021 Optik 227 165936
[11] Awan A U, Rehman H U, Tahir M, et al. 2021 Optik 227 165496
[12] Mirzazadeh M, Eslami M, Vajargah B F, et al. 2014 Optik 125 4246
[13] Baleanu D, Inc M, Aliyu A I, et al. 2017 Optik 147 248
[14] Tamilselvan K, Kanna T and Khare A 2016 Commun. Nonlinear Sci. Numer. Simul. 39 134
[15] Das N and Saha Ray S 2023 Optical and Quantum Electronics 55 1071
[16] Dabrowska-Wüster B J, Wüster S and Davis M J 2009 New J. Phys. 11 053017
[17] Atai J and Malomed B A 2001 Phys. Lett. A 284 247
[18] Agrawal G P 2000 Nonlinear Science at the Dawn of the 21st Century (Berlin: Springer-Verlag) pp. 195-211
[19] Pan Wang and Bo Tian 2012 Opt. Commun. 285 3567
[20] Akram G, Sadaf M and Khan M A U 2023 Math. Comput. Simul. 206 1
[21] Bulut H, Sulaiman T A and Baskonus H M 2018 Optik 163 49
[22] Rezazadeh, Hadi, Abazari, et al. 2020 Open Physics 18 761
[23] Wang Y, Wang W and Zhou S Y 2017 Commun. Theor. Phys. 68 623
[24] Wang Y, Cheng Q, Guo J, et al. 2019 AIP Adv. 9 075206
[25] Abdou M A 2007 Chaos, Solitons and Fractals 31 95
[26] Fei J X and Zheng C L 2013 Chin. J. Phys. 51 200
[27] Das A, Karmakar B, Biswas A, et al. 2023 Nonlinear Dyn. 111 15347
[28] Qi W, Liang Z X and Zhang Z D 2013 J. Phys. B 46 175301
[29] Eslami M, Mirzazadeh M, Vajargah B F, et al. 2014 Optik 125 3107
[30] Rezazadeh H, Ullah N and Akinyemi L, et al. 2021 Results in Physics 24 104179
[31] Wang Y and Zhou Y 2014 AIP Advance 4 067131
[32] Inc M, Aliyu A I, Yusuf A, et al. 2018 Superlattices and Microstructures 113 541
[33] Liu X, Jiao Y, Wang Y, et al. 2022 Results in Physics 33 105162
[34] Tang X and Wang Y 2023 The Eur. Phys. J. D 77 179
[35] Zhao Y, Chen Y, Dai J, et al. 2019 Adv. Math. Phys. 2019 8264848
[36] Li J, Yang Z J and Zhang S M 2024 Chaos, Solitons and Fractals 187 115338
[37] Sun Z, Deng D and Yang Z M 2024 Opt. Express 32 29976
[38] Pang F Z, et al. 2023 Chin. Phys. B 32 050205
[39] Biswas A, Yildirim Y, Yasar E, et al. 2018 Optik 160 33
[40] Yang J 2010 Nonlinear Waves in Integrable and Non-integrable Systems (Philadelphia: SIAM) p. 168
[41] Pashaev O K and Lee J H 2002 Mod. Phys. Lett. A 17 1601
[42] Choudhuri A, Triki H and Porsezian K 2016 Phys. Rev. A 94 063814
[1] Darboux transformation, positon solution, and breather solution of the third-order flow Gerdjikov-Ivanov equation
Shuzhi Liu(刘树芝), Ning-Yi Li(李宁逸), Xiaona Dong(董晓娜), and Maohua Li(李茂华). Chin. Phys. B, 2025, 34(1): 010201.
[2] Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber
Chen-Yan Zhang(张辰妍), Xin-He Dou(窦鑫河), Zhen Chen(陈震), Jing-Han Zhao(赵靖涵), Wei Sun(孙薇), Ze-Yu Fan(樊泽宇), Tao Zhang(张涛), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国). Chin. Phys. B, 2025, 34(1): 014205.
[3] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[4] Multi-soliton solutions of coupled Lakshmanan-Porsezian-Daniel equations with variable coefficients under nonzero boundary conditions
Hui-Chao Zhao(赵会超), Lei-Nuo Ma(马雷诺), and Xi-Yang Xie(解西阳). Chin. Phys. B, 2024, 33(8): 080201.
[5] An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions
Jiao Wei(魏姣), Xianguo Geng(耿献国), and Xin Wang(王鑫). Chin. Phys. B, 2024, 33(7): 070202.
[6] Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers
Zhong-Zhou Lan(兰中周). Chin. Phys. B, 2024, 33(6): 060201.
[7] On the generation of high-quality Nyquist pulses in mode-locked fiber lasers
Yuxuan Ren(任俞宣), Jinman Ge(葛锦蔓), Xiaojun Li(李小军), Junsong Peng(彭俊松), and Heping Zeng(曾和平). Chin. Phys. B, 2024, 33(3): 034210.
[8] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[9] Asymptotic analysis on bright solitons and breather solutions of a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide
Xin Zhao(赵鑫), Zhong Du(杜仲), Li-Jian Zhou(周立俭), Rong-Xiang Liu(刘荣香), and Xu-Hu Wang(王绪虎). Chin. Phys. B, 2024, 33(11): 110204.
[10] Third-order nonlinear wavelength conversion in chalcogenide glass waveguides towards mid-infrared photonics
Fengbo Han(韩锋博), Jiaxin Gu(顾佳新), Lu Huang(黄璐), Hang Wang(王航), Yali Huang(黄雅莉), Xuecheng Zhou(周学成), Shaoliang Yu(虞绍良), Zhengqian Luo(罗正钱), Zhipeng Dong(董志鹏), and Qingyang Du(杜清扬). Chin. Phys. B, 2024, 33(10): 104207.
[11] Effective regulation of the interaction process among three optical solitons
Houhui Yi(伊厚会), Xiaofeng Li(李晓凤), Junling Zhang(张俊玲), Xin Zhang(张鑫), and Guoli Ma(马国利). Chin. Phys. B, 2024, 33(10): 100502.
[12] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[13] Soliton propagation for a coupled Schrödinger equation describing Rossby waves
Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷). Chin. Phys. B, 2023, 32(7): 070202.
[14] Influence of the initial parameters on soliton interaction in nonlinear optical systems
Xinyi Zhang(张昕仪) and Ye Wu(吴晔). Chin. Phys. B, 2023, 32(7): 070505.
[15] Adjusting amplitude of the stored optical solitons by inter-dot tunneling coupling in triple quantum dot molecules
Yin Wang(王胤), Si-Jie Zhou(周驷杰), Yong-He Deng(邓永和), and Qiao Chen(陈桥). Chin. Phys. B, 2023, 32(5): 054203.
No Suggested Reading articles found!