Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124212    DOI: 10.1088/1674-1056/ad0ccc
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials

Hong Liang(梁红)1, Haoyuan Song(宋浩元)2, Yubo Li(李宇博)2, Di Yu(于迪)2, and Shufang Fu(付淑芳)2,†
1 Department of Physics, Harbin University, Harbin 150086, China;
2 Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
Abstract  We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials (NHMs) rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by the left-handed circularly (LCP) component and right-handed circularly polarized (RCP) component is exhibited. We derived the analytical expression for in- and out-of-plane spatial shifts for each spin component of the vortex beam. The orientation angle of the optical axis plays a key role in the spin splitting between the two spin components, which can be reflected in the simple expressions for spatial shifts without the rotation angle. Based on an α-MoO3 biaxial NHM, the spatial shifts of the two spin components with the topological charge were investigated. As the topological charge increases, the spatial shifts also increase; in addition, a tiny spatial shift close to zero can be obtained if we control the incident frequency or the polarization of the reflected beams. It can also be concluded that the maximum of the spin splitting results from the LCP component at p-incidence and the RCP component at s-incidence in the RB-II hyperbolic frequency band. The effect of the incident angle and the thickness of the α-MoO3 film on spin splitting is also considered. These results can be used for manipulating infrared radiation and optical detection.
Keywords:  spin splitting      hyperbolic material      vortex beam      orbital angular momentum  
Received:  22 September 2023      Revised:  05 November 2023      Accepted manuscript online:  16 November 2023
PACS:  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  41.85.Ct (Particle beam shaping, beam splitting)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.68.+m (Optical properties of surfaces)  
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No.LH2022F041).
Corresponding Authors:  Shufang Fu     E-mail:  shufangfu75@163.com

Cite this article: 

Hong Liang(梁红), Haoyuan Song(宋浩元), Yubo Li(李宇博), Di Yu(于迪), and Shufang Fu(付淑芳) Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials 2023 Chin. Phys. B 32 124212

[1] Onoda M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901
[2] Bliokh K and Bliokh Y 2006 Phys. Rev. Lett. 96 073903
[3] Shaltout A, Liu J J, Kildishev A and Shalaev V 2015 Optica 2 860
[4] Xiang Y J, Jiang X, You Q, Guo J and Dai X Y 2017 Photon. Res. 5 467
[5] Guddala S, Khatoniar M, Yama N, Liu W X, Agarwal G S and Menonet V M 2021 Optica 8 50
[6] Zhou X X, Zhang J, Ling X H, Chen S Z, Luo H L and Wen S C 2013 Phys. Rev. A 88 053840
[7] Zhang Q, Gao D L and Gao L 2021 Opt. Express 29 9816
[8] Bai X X, Tang L L, Lu W Q, Wei X Z, Liu S and Liu Y 2017 Opt. Lett. 42 4087
[9] Zhang W S, Wu W J, Chen S Z, Zhang J, Ling X H and Shu W X 2018 Photon. Res. 6 511
[10] Prinz E, Hartelt M, Spektor G, Orenstein M and Aeschlimann M 2023 ACS Photonics 10 340
[11] Efremidis N K, Chen Z G, Segev M and Christodoulides D N 2019 Optica 6 686
[12] Stoian R, Bhuyan M K, Zhang G D, Cheng G H, Meyer R and Courvoisier F 2018 Adv. Opt. Techn. 7 165
[13] Nye J F and Berry M V 1974 Proc. R. Soc. Lond. A 336 165
[14] Yan Y, Xie G D, Lavery M P J, Huang H, Ahmed N, Bao C J, Ren Y X, Cao Y W, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J and Willner A E 2014 Nat. Commun. 5 4876
[15] Gahagan K T and Swartzlander G A 1996 Opt. Lett. 21 827
[16] Yan L, Gregg P, Karimi E, Rubano A, Marrucci L, Boyd R and Ramachandran S 2015 Optica 2 900
[17] Zhu W G, Jiang M J, Guan H Y, Yu J H, Lu H H, Zhang J and Chen Z 2017 Photon. Res. 5 684
[18] Chen Z, Zhang H, Zhang X, Li H, Yang J X, Zhang W B, Xi L X and Tang X F 2020 Opt. Express 28 29529
[19] Liu R, Wang G H, Deng D M and Zhang T T 2021 Opt. Express 29 22192
[20] He Y, Xie Z, Yang B, Chen X, Liu J, Ye H, Zhou X, Li Y, Chen S and Fan D 2020 Photon. Res. 8 963
[21] Haug J, Palei M and Shrout J D 2021 Opt. Express 29 42331
[22] Liu X Z, Kong W J and Wang C T 2021 J. Appl. Phys. 54 285103
[23] Argyropoulos C, Estakhri N M, Monticone F and Alú A 2013 Opt. Express 21 15037
[24] Fu J C, Jin Y, Evans J and He S L 2020 Adv. Photon. Res. 2 2000043
[25] Dai S, Ma Q, Andersen T I, Mcleod A S, Fei Z, Liu M K, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler M M and Basov D N 2015 Nat. Commun. 6 6963
[26] Vasilantonakis, Wurtz G A, Podolskiy V A and Zayats A V 2015 Opt. Express 23 14329
[27] Li P N, Dolado I, Alfaro-Mozaz F J, Casanova F, Hueso L E, Liu S, Edgar J H, Nikitin A Y, Vélez S and Hillenbrand R 2018 Science 359 892
[28] Kim H S, Cook J B and Lin H 2017 Nat. Mater. 16 454
[29] Ma W L, Alonso-González P and Li S J 2018 Nature 562 557
[30] Sheng D, Gao A, Liu X and Zhang Q 2023 Nanomaterials 13 2272
[31] Zheng Z B, Xu N S, Oscurato S L, Tamagnone M, Sun F S, Jiang Y Z, Ke Y L, Chen J N, Huang W C, Wilson W L, Ambrosio A, Deng S Z and Chen H J 2019 Sci. Adv. 5 eaav8690
[32] Hu G W, Ou Q D, Si G Y, Wu Y J, Wu J, Dai Z G, Krasnok A, Mazor Y, Zhang Q, Bao Q L, Qiu C W and Alú A 2020 Nature 582 209
[33] Song H Y, Wang X G, Hao S P, Fu S F and Wang X Z 2023 Opt. Commun. 542 129603
[34] Zhou S, Khan A, Fu S F and Wang X Z 2018 Opt. Express. 27 15222
[35] Deng G S, Dereshgi S A, Song X L, Wei C W and Aydin K 2020 Phys. Rev. B 102 035408
[36] Peng H Y and Wang X Z 2021 J. Opt. Soc. Am. B 38 2027
[37] Bliokh K Y and Aiello A 2013 J. Opt. 15 014001
[1] Ultraviolet metalens and metalens array of focused vortex beams
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波). Chin. Phys. B, 2023, 32(6): 064206.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[4] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[7] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[8] Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum
Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124210.
[9] Generation of structure light in probe absorption spectrum via microwave-driven Y-type atomic system
Muhammad Saeed and Muqaddar Abbas. Chin. Phys. B, 2023, 32(12): 124211.
[10] Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition
Sheng-Jie Ma(马圣杰), Shi-Long Xu(徐世龙), Xiao Dong(董骁), Xin-Yuan Zhang(张鑫源), You-Long Chen(陈友龙), and Yi-Hua Hu(胡以华). Chin. Phys. B, 2023, 32(10): 104208.
[11] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[12] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[15] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
No Suggested Reading articles found!