Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096805    DOI: 10.1088/1674-1056/ad62e0
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film

Wooseon Choi1,†, Bumsu Park2,†, Jaejin Hwang3,†, Gyeongtak Han4, Sang-Hyeok Yang1, Hyeon Jun Lee5, Sung Su Lee6, Ji Young Jo6, Albina Y. Borisevich7, Hu Young Jeong8, Sang Ho Oh9,‡, Jaekwang Lee3,§, and Young-Min Kim1,¶
1 Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea;
2 Samsung Electronics, Hwaseong 18448, Republic of Korea;
3 Department of Physics, Pusan National University, Busan 46241, Republic of Korea;
4 LG Energy Solution, Daejeon 34122, Republic of Korea;
5 Department of Materials Science and Engineering, Kangwon National University, Republic of Korea;
6 School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea;
7 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN 37831, USA;
8 Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea;
9 Department of Energy Engineering, KENTECH Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea
Abstract  The functionalities and diverse metastable phases of multiferroic BiFeO$_{3}$ (BFO) thin films depend on the misfit strain. Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known, it is unclear whether a single-crystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs. Thus, understanding the strain relaxation behavior is key to elucidating the lattice strain-property relationship. In this study, a correlative strain analysis based on dark-field inline electron holography (DIH) and quantitative scanning transmission electron microscopy (STEM) was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film. The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief, forming irregularly strained nanodomains. The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale. The globally integrated strain for each nanodomain was estimated to be close to $-1.5%$, irrespective of the nanoscale strain states, which was consistent with the fully strained BFO film on the SrTiO$_{3}$ substrate. Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation. This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films, such as BFO, with various low-symmetry polymorphs.
Keywords:  BiFeO$_{3}$      scanning transmission electron microscopy      electron holography      multiferroic material      strain mapping  
Received:  22 April 2024      Revised:  10 July 2024      Accepted manuscript online:  15 July 2024
PACS:  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  61.05.jp (Electron holography)  
  77.55.Nv (Multiferroic/magnetoelectric films)  
  68.55.-a (Thin film structure and morphology)  
Fund: Project supported by Samsung Research Fundings & Incubation Center of Samsung Electronics (Grant No. SRFCMA1702-01). Y.-M.K acknowledges partial support from the National Research Foundation of Korea (NRF) (Grant No. 2023R1A2C2002403) funded by the Korean government in Korea.
Corresponding Authors:  Sang Ho Oh, Jaekwang Lee, Young-Min Kim     E-mail:  shoh@kentech.ac.kr;jaekwangl@pusan.ac.kr;youngmk@skku.edu

Cite this article: 

Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film 2024 Chin. Phys. B 33 096805

[1] Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K and Triscone J M 2007 Annu. Rev. Mater. Res. 37 589
[2] Hwang J, Feng Z, Charles N, Wang X R, Lee D, Stoerzinger K A, Muy S, Rao R R, Lee D, Jacobs R, Morgan D and Shao-Horn Y 2019 Mater. Today 31 100
[3] Ederer C and Spaldin N A 2005 Phys. Rev. Lett. 95 257601
[4] Catalan G, Lubk A, Vlooswiik A H G, Snoeck E, Magen C, Janssens A, Rispens G, Rijnders G, Blank D H A and Noheda B 2011 Nat. Mater. 10 963
[5] Chu K, Jang B K, Sung J H, Shin Y A, Lee E S, Song K, Lee J H. Woo C S, Kim S J, Kim S J, Choi S Y, Koo T Y, Kim Y H, Oh S H, Jo M H and Yang C H 2015 Nat. Nanotechnol. 10 972
[6] Jeon B C, Lee D, Lee M H, Yang S M, Chae S C, Song T K, Bu S D, Chung J S, Yoon J G and Noh T W 2013 Adv. Mater. 25 5643
[7] Béa H, Dupé B, Fusil S, Mattana R, Jacquet E, Warot-Fonrose B, Wilhelm F, Rogaley A, Petit S, Cors V, Anane A, Petroff F, Bouzehouane K, Geneste G, Dkhil B, Lisenkov S, Ponomareva I, Bellaiche L, Bibes M and Barthelemy A 2009 Phys. Rev. Lett. 102 217603
[8] Infante I C, Lisenkov S, Dupe B, Bibes M, Fusil S, Jacquet E, Geneste G, Petit S, Courtial A, Juraszek J, Bellaiche L, Barthelemy A and Dkhil B 2010 Phys. Rev. Lett. 105 057601
[9] Sando D, Agbelele A, Daumont C, Rahmedov D, Ren W, Infante I C, Lisenkov S, Prosandeev S, Fusil S, Jacquet E, Carrétéro C, Petit S, Cazayous M, Juraszek J, Breton J M L, Bellaiche L, Dhkil B, Barthélémy A and Bibes M 2014 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 372 20120438
[10] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[11] Dieguez O, Gonzalez-Vazquez O E, Wojdel J C and Iniguez J 2011 Phys. Rev. B 83 094106
[12] Kim Y M, Kumar A, Hatt A, Morozovska A N, Tselev A, Biegalski M D, Ivanov I, Eliseev E A, Pennycook S J, Rondinelli J M, Kalinin S V and Borisevich A Y 2013 Adv. Mater. 25 2497
[13] Christen H M, Nam J H, Kim H S, Hatt A J and Spaldin N A 2011 Phys. Rev. B 83 144107
[14] Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W and Ramesh R 2009 Science 326 977
[15] Chen Z, Luo A, Huang C, Yang Y Q P, You L, Hu C, Wu T, Wang J, Gao C, Sritharan T and Chen L 2011 Adv. Funct. Mater. 21 133
[16] Rossell M D, Erni R, Prange M P, Idrobo J C, Luo W, Zeches R J, Pantelides S T and Ramesh R 2012 Phys. Rev. Lett. 108 047601
[17] Yang Y, Schlepütz C M, Adamo C, Schlom D G and Clarke R 2013 APL Materials 1 052102
[18] Saito K, Ulyanenkov A, Grossmann V, Ress H, Bruegemann L, Ohta H, Kurosawa T, Ueki S and Funakubo H 2006 Jpn. J. Appl. Phys. 45 7311
[19] Kim D H, Lee H N, Biegalski M D and Christen H M 2008 Appl. Phys. Lett. 92 012911
[20] Chu Y H, Zhao T, Cruz M P, Zhan Q, Yang P L, Martin L W, Huijben M, Yang C H, Zavaliche F, Zheng H and Ramesh R 2007 Appl. Phys. Lett. 90 252906
[21] Lee H J, Lee S S, Kwak J H, Kim Y M, Jeong H Y, Borisevich A Y, Lee S Y, Noh D Y, Kwon O, Kim Y and Jo J Y 2016 Scientific Reports 6 38724
[22] Fischer A, Kühne H and Richter H 1994 Phys. Rev. Lett. 73 2712
[23] Kogan S M 1964 Sov. Phys. Solid State 5 2069
[24] Lee D and Noh Tae W 2012 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 370 4944
[25] Sando D, Barthelemy A and Bibes M 2014 J. Phys.-Condens. Matter 26 473201
[26] Holcomb M B, Martin L W, Scholl A, He Q, Yu P, Yang C H, Yang S Y, Glans P A, Valvidares M, Huijben M, Kortright J B, Guo J, Chu Y H and Ramesh R 2010 Phys. Rev. B 81 134406
[27] Lee S S, Kim YM, Lee H J, Seo O, Jeong H Y, He Q, Borisevich A Y, Kang B, Kwon O, Kang S, Kim Y, Koo T Y, Rhyee J S, Noh D Y, Cho B, Seo J H, Lee J H and Jo J Y 2018 Adv. Funct. Mater. 28 1800839
[28] Infante I C, Lisenkov S, Dupé B, Bibes M, Fusil S, Jacquet E, Geneste G, Petit S, Courtial A, Juraszek J, Bellaiche L, Barthélémy A and Dkhil B 2010 Phys. Rev. Lett. 105 057601
[29] Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P, Toulouse C, Infante I C, Pyatakov A P, Fusil S, Jacquet E, Carretero C, Deranlot C, Lisenkov S, Wang D, Le Breton J M, Cazayous M, Sacuto A, Juraszek J, Zvezdin A K, Bellaiche L, Dkhil B, Barthelemy A and Bibes M 2013 Nat. Mater. 12 641
[30] Sando D, Xu B, Bellaiche L and Nagarajan V 2016 Appl. Phys. Rev. 3 011106
[31] Huang C W, Chu Y H, Chen Z H, Wang J, Sritharan T, He Q, Ramesh R and Chen L 2010 Appl. Phys. Lett. 97 152901
[32] Rana D S, Takahashi K, Mavani K R, Kawayama I, Murakami H, Tonouchi M, Yanagida T, Tanaka H and Kawai T 2007 Phys. Rev. B 75 060405
[33] Catalan G, Sinnamon L J and Gregg J M 2004 J. Phys.-Condes. Matter 16 2253
[34] Catalan G, Noheda B, McAnney J, Sinnamon L J and Gregg J M 2005 Phys. Rev. B 72 020102
[35] Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F and Noh T W 2011 Phys. Rev. Lett. 107 057602
[36] Kim Y M, He J, Biegalski M D, Ambaye H, Lauter V, Christen H M, Pantelides S T, Pennycook S J, Kalinin S V and Borisevich A Y 2012 Nat. Mater. 11 888
[37] Kim Y M, Morozovska A, Eliseev E, Oxley M P, Mishra R, Selbach S M, Grande T, Pantelides S T, Kalinin S V and Borisevich A Y 2014 Nat. Mater. 13 1019
[38] Hatt A J, Spaldin N A and Ederer C 2010 Phys. Rev. B 81 054109
[39] Hÿtch M J, Putaux JL and Peńisson JM 2003 Nature 423 270
[40] Tang Y L, Zhu Y L, Liu Y, Wang Y J and Ma X L 2017 Nat. Commun. 8 15994
[41] Kim Y M, Lee S B, Lee J and Oh S H 2019 Nanoscale 11 8281
[42] Lee J K, Park B, Song K, Jung W Y, Tyutyunnikov D, Yang T, Koch C T, Park C G, van Aken P A, Kim YM, Kim J K, Bang J, Chen L Q and Oh S H 2018 Acta. Mater. 145 109
[43] Zhang N and Asle Zaeem M 2019 npj Comput. Mater. 5 54
[44] Lines M E and Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press)
[45] Daumont C J M, Farokhipoor S, Ferri A, WojdełJ C, Íniguez J, Kooi B J and Noheda B 2010 Phys. Rev. B 81 144115
[46] Chen Z H, Prosandeev S, Luo Z L, Ren W, Qi Y J, Huang C W, You L, Gao C, Kornev I A, Wu T, Wang J L, Yang P, Sritharan T, Bellaiche L and Chen L 2011 Phys. Rev. B 84 094116
[47] Borisevich A Y, Eliseev E A, Morozovska A N, Cheng C J, Lin J Y, Chu Y H, Kan D, Takeuchi I, Nagarajan V and Kalinin S V 2012 Nat. Commun. 3 775
[48] Koch C T 2002 Determination of core structure periodicity and point defect density along dislocation (Ph. D. Dissertation) (Arizona: Arizona State University) (in USA)
[49] Kresse G and Furthmüller J 1993 Phys. Rev. B 54 11169
[50] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[1] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[2] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[3] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[4] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[5] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[6] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏). Chin. Phys. B, 2024, 33(3): 038502.
[7] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[8] Taking snapshots of a moving electron wave packet in molecules using photoelectron holography in strong-field tunneling ionization
Mingrui He(何明睿), Yang Fan(樊洋), Yueming Zhou(周月明), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(12): 123202.
[9] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[10] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[11] Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries
Yu-Xin Tong(仝毓昕), Qing-Hua Zhang(张庆华), Lin Gu(谷林). Chin. Phys. B, 2018, 27(6): 066107.
[12] Backward rescattered photoelectron holography in strong-field ionization
Fujun Chen(陈富军), Ruxian Yao(姚汝贤), Jianghua Luo(罗江华), Changqing Wang(王长清). Chin. Phys. B, 2018, 27(10): 103202.
[13] Emergent ferroelectricity in disordered tri-color multilayer structure comprised of ferromagnetic manganites
Li-Wei Niu(牛利伟), Chang-Le Chen(陈长乐), Xiang-Lei Dong(董祥雷), Hui Xing(邢辉), Bing-Cheng Luo(罗炳成), Ke-Xin Jin(金克新). Chin. Phys. B, 2016, 25(10): 107701.
[14] Study on superstructure in ion co-doped BiFeO3 by using transmission electron microscopy
Pu Shi-Zhou (蒲十周), Guo Chao (郭超), Li Mei-Ya (李美亚), Chen Zhen-Lian (陈珍莲), Zou Hua-Min (邹化民). Chin. Phys. B, 2015, 24(4): 046101.
[15] Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials
Liu Yu (刘宇), Zhai Liang-Jun (翟良君), Wang Huai-Yu (王怀玉). Chin. Phys. B, 2015, 24(3): 037510.
No Suggested Reading articles found!