Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 044202    DOI: 10.1088/1674-1056/ad0771
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effectively modulating spatial vortex four-wave mixing in a diamond atomic system

Nuo Ba(巴诺)1,†, Ming-Qi Jiang(姜明奇)1, Jin-You Fei(费金友)1, Dan Wang(王丹)1, Hai-Lin Jiang(蒋海林)2, Lei Wang(王磊)2,‡, and Hai-Hua Wang(王海华)2
1 National Demonstration Center for Experimental Physics Education, College of Physics, Jilin Normal University, Siping 136000, China;
2 College of Physics, Jilin University, Changchun 130012, China
Abstract  Due to the spatial characteristics of orbital angular momentum, vortex fields can be applied in the fields of quantum storage and quantum information. We study the realization of spatially modulated vortex fields based on four-wave mixing in a four-level atomic system with a diamond structure. The intensity and spiral phase of the vortex field are effectively transferred to the generated four-wave mixing field. By changing the detuning of the probe field, the phase and intensity of the generated vertex four-wave mixing field can be changed. When the probe field takes a large detuning value, the spatial distribution of the intensity and phase of the vertex four-wave mixing field can be effectively tuned by adjusting the Rabi frequency or detuning value of the coupled field. At the same time, we also provide a detailed explanation based on the dispersion relationship, and the results agree well with our simulation results.
Keywords:  coherent optical effects      four-wave mixing      orbital angular momentum  
Received:  19 June 2023      Revised:  23 October 2023      Accepted manuscript online:  27 October 2023
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704151 and 11247201) and the Twelfth Five-year Program for Science and Technology of Education Department of Jilin Province (Grant No. 20150215).
Corresponding Authors:  Nuo Ba, Lei Wang     E-mail:  banuo2008@163.com;wang_lei@jlu.edu.cn

Cite this article: 

Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华) Effectively modulating spatial vortex four-wave mixing in a diamond atomic system 2024 Chin. Phys. B 33 044202

[1] Gray H R, Whitley R M and Stroud C R 1978 Opt. Lett. 3 218
[2] Scully M O, Zhu S Y and Gavrielides A 1989 Phys. Rev. Lett. 62 2813
[3] Gao J Y, Zhang H Z, Cui H F, Guo X Z, Jiang Y, Wang Q W, Jin G X and Li J S 1994 Opt. Commun. 110 590
[4] Harris S E 1997 Phys. Today 50 36
[5] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[6] Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 64 1107
[7] Hakuta K, Marmet L and Stoicheff B P 1991 Phys. Rev. Lett. 66 596
[8] Zhang G Z, Hakuta K and Stoicheff B P 1993 Phys. Rev. Lett. 71 3099
[9] Jain M, Yin G Y, Field J E and Harris S E 1993 Opt. Lett. 18 998
[10] Li Y Q and Xiao M 1996 Opt. Lett. 21 1064
[11] Deng L, Kozuma M, Hagley E W and Payne M G 2002 Phys. Rev. Lett 88 143902
[12] Wu Y, Saldana J and Zhu Y 2003 Phys. Rev. A 67 013811
[13] Wu Y, Payne M G, Hagley E W and Deng L 2004 Opt. Lett. 29 2294
[14] Zhang Y, Brown A W and Xiao M 2007 Phys. Rev. Lett. 99 123603
[15] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[16] He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826
[17] Hamedi H R, Ruseckas J, Paspalakis E and Juzeliǖnas G 2019 Phys. Rev. A 99 033812
[18] Wang H H, Wang J, Kang Z H, Wang L and Gao J Y 2019 Phys. Rev. A 100 013822
[19] Hamedi H R, Paspalakis E, Žlabys G, Juzeliǖnas G and Ruseckas J 2019 Phys. Rev. A 100 023811
[20] Walker G, Arnold A S and Franke-Arnold S 2012 Phys. Rev. Lett. 108 243601
[21] Zhang W, Ding D S and Jiang Y K 2014 Appl. Phys. Lett. 104 171103
[22] Wang Z G, Yang J W, Sun Y Y and Zhang Y P 2018 Opt. Lett. 43 4354
[23] Pan X Z, Yu S, Zhou Y F, Zhang K, Zhang K, Lv S C, Li S J, Wang W and Jing J T 2019 Phys. Rev. Lett. 123 070506
[24] Qiu J, Wang Z P, Ding D S, Huang Z X and Yu B L 2020 Phys. Rev. A 102 033516
[25] Yin H, Wang Z P, Ding D S and Yu B L 2019 Opt. Express 27 29863
[26] Yu C and Wang Z P 2021 Phys. Rev. A 103 013518
[27] Wang Z P, Zhang Y F, Paspalakis E and Yu B L 2020 Phys. Rev. A 102 063509
[28] Qiu J, Wang Z P, Ding D S, Li W B and Yu B L 2020 Opt. Express 28 2975
[29] Zhang Y F, Wang Z P, Qiu J and Yu B L 2019 Appl. Phys. Lett. 115 171905
[30] Rahmatullah, Abbas M, Ziauddin and Qamar S 2020 Phys. Rev. A 101 023821
[31] Mahdavi M, Sabegh Z A, Mohammadi M, Mahmoudi M and Hamedi H R 2020 Phys. Rev. A 101 063811
[32] Liu R, Li F, Padgett M J and Phillips D B 2015 Optica 2 1028
[1] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[2] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[3] Bessel—Gaussian beam-based orbital angular momentum holography
Jiaying Ji(季佳滢), Zhigang Zheng(郑志刚), Jialong Zhu(朱家龙), Le Wang(王乐), Xinguang Wang(王新光), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(1): 014204.
[4] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[5] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[6] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[7] Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum
Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124210.
[8] Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
Hong Liang(梁红), Haoyuan Song(宋浩元), Yubo Li(李宇博), Di Yu(于迪), and Shufang Fu(付淑芳). Chin. Phys. B, 2023, 32(12): 124212.
[9] Absorption spectra and enhanced Kerr nonlinearity in a four-level system
Hao-Jie Huangfu(皇甫浩杰), Ying-Jie Du(杜英杰), and Ai-Hua Gao(高爱华). Chin. Phys. B, 2023, 32(11): 114214.
[10] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[11] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[12] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[13] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[14] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[15] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
No Suggested Reading articles found!