CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum |
Longfei Guo(郭龙飞), Bing Zha(查兵), Xiaoqiao Sun(孙晓乔), Songmei Ni(倪松梅), Ruiyu Huang(黄瑞玉), Lin Chen(陈琳), and Zhikuo Tao(陶志阔)† |
College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic (EM) waves with spin angular momentum (SAM) and orbital angular momentum (OAM) using micromagnetic simulations. First, the guiding centers of the skyrmion driven by EM waves with SAM, i.e., left-handed and right-handed circularly polarized EM waves, present circular trajectories, while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components. Second, the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves. Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM, the angular momentum is transferred to the skyrmion non-uniformly, while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving. Third, the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated. It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM. We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories. Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.
|
Received: 04 June 2024
Revised: 05 August 2024
Accepted manuscript online: 30 August 2024
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
|
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
85.70.Ay
|
(Magnetic device characterization, design, and modeling)
|
|
12.39.Dc
|
(Skyrmions)
|
|
Corresponding Authors:
Zhikuo Tao
E-mail: zktao@njupt.edu.cn
|
Cite this article:
Longfei Guo(郭龙飞), Bing Zha(查兵), Xiaoqiao Sun(孙晓乔), Songmei Ni(倪松梅), Ruiyu Huang(黄瑞玉), Lin Chen(陈琳), and Zhikuo Tao(陶志阔) Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum 2024 Chin. Phys. B 33 117501
|
[1] Skyrme T H R 1962 Nucl. Phy. 31 556 [2] Skyrme T H R 1961 Proc. R. Soc. London Ser. A 262 237 [3] Skyrme T H R 1961 Proc. R. Soc. London Ser. A 260 127 [4] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031 [5] Göbel B, Mertig I and Tretiakov O A 2021 Phys. Rep. 895 1 [6] Marrows C and Zeissler K 2021 Appl. Phys. Lett. 119 250520 [7] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915 [8] Moriya T 1960 Phys. Rev. Lett. 4 228 [9] Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B and Schmidt M 2010 Phys. Rev. B 81 041203 [10] Shibata K, Yu X, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y and Tokura Y 2013 Nat. Nanotechnol. 8 723 [11] Yu X, Kanazawa N, Onose Y, Kimoto K, Zhang W, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106 [12] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M and Weigand M 2016 Nat. Mater. 15 501 [13] Henderson M, Bleuel M, Beare J, Cory D, Heacock B, Huber M, Luke G, Pula M, Sarenac D and Sharma S 2022 Phys. Rev. B 106 094435 [14] Birch M, Moody S, Wilson M, Crisanti M, Bewley O, Štefančič A, Balakrishnan G, Fan R, Steadman P and Venero D A 2020 Phys. Rev. B 102 104424 [15] Bak P and Jensen M H 1980 J. Phys. C: Solid State Phys. 13 L881 [16] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 [17] Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M and Finocchio G 2014 Sci. Rep. 4 6784 [18] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839 [19] Mochizuki M, Yu X, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y and Nagaosa N 2014 Nat. Mater. 13 241 [20] Kong L and Zang J 2013 Phys. Rev. Lett. 111 067203 [21] Everschor K, Garst M, Binz B, Jonietz F, Mühlbauer S, Pfleiderer C and Rosch A 2012 Phys. Rev. B 86 054432 [22] Moon K W, Kim D K, Je S G, Chun B S, Kim W, Qiu Z, Choe S B and Hwang C 2016 Sci. Rep. 6 20360 [23] Kim J V, Garcia-Sanchez F, Sampaio J, Moreau-Luchaire C, Cros V and Fert A 2014 Phys. Rev. B 90 064410 [24] McKeever B, Rodrigues D, Pinna D, Abanov A, Sinova J and Everschor-Sitte K 2019 Phys. Rev. B 99 054430 [25] Garanin D A, Jaafar R and Chudnovsky E M 2020 Phys. Rev. B 101 014418 [26] Wang W, Beg M, Zhang B, Kuch W and Fangohr H 2015 Phys. Rev. B 92 020403 [27] Jin C D, Song C K, Wang J S, Xia H Y, Wang J B and Liu Q F 2017 J. Appl. Phys. 122 223901 [28] Mochizuki M 2012 Phys. Rev. Lett. 108 017601 [29] Vigo-Cotrina H and Guimarães A 2020 J. Magn. Magn. Mater. 507 166848 [30] Mehmood N, Wang J, Zhang C, Zeng Z, Wang J and Liu Q 2022 J. Magn. Magn. Mater. 545 168775 [31] Shen X, Zhao R, Ji L, Hu C, Ren W, Chen W, Li Y, Zhang J, Zhang X and Dong X 2022 J. Magn. Magn. Mater. 541 168521 [32] Liu Y, Liu T, Jin Z, Hou Z, Chen D, Fan Z, Zeng M, Lu X, Gao X and Qin M 2022 Phys. Rev. B 106 064424 [33] Yang W, Yang H, Cao Y and Yan P 2018 Opt. Express 26 8778 [34] Li H, Rodriguez-Fajardo V, Chen P and Forbes A 2020 Phys. Rev. A 102 063533 [35] Guan S H, Liu Y, Hou Z P, Chen D Y, Fan Z, Zeng M, X. Lu X B, Gao X S, Qin M H and Liu J M 2023 Phys. Rev. B 107 214429 [36] Beg M, Lang M and Fangohr H 2022 IEEE Trans. Magn. 58 7300205 [37] Gilbert T L 2004 IEEE Trans. Mag. 40 3443 [38] Papanicolaou N and Tomaras T N 1991 Nucl. Phys. B 360 425 [39] Dai Y Y, Wang H, Tao P, Yang T, Ren W J and Zhang Z D 2013 Phys. Rev. B 88 054403 [40] Wang W W, Beg M, Zhang B, Kuch W and Fangohr H 2015 Phys. Rev. B 92 020403 [41] Yu D X, Sui C W, Schulz D, Berakdar J and Jia C L 2021 Phys. Rev. Appl. 16 034032 [42] Makhfudz I, Krüger B and Tchernyshyov O 2012 Phys. Rev. Lett. 109 217201 [43] Moon K W, Chun B S, Kim W, Qiu Z Q and Hwang C 2014 Phys. Rev. B 89 064413 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|