Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120304    DOI: 10.1088/1674-1056/ad8553
GENERAL Prev   Next  

Deep-learning-assisted optical communication with discretized state space of structured light

Minyang Zhang(张敏洋)1, Dong-Xu Chen(陈东旭)2,3,†, Pengxiang Ruan(阮鹏祥)1, Jun Liu(刘俊)1, Dong-Zhi Fu(付栋之)4, Jun-Long Zhao(赵军龙)2, and Chui-Ping Yang(杨垂平)5,‡
1 School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
2 Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China;
3 Jiangxi Province Key Laboratory of Applied Optical Technology (2024SSY03051), Shangrao Normal University, Shangrao 334001, China;
4 School of Cable Engineering, Henan Institute of Technology, Xinxiang 453003, China;
5 School of Physics, Hangzhou Normal University, Hangzhou 311121, China
Abstract  The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical communication. The Laguerre-Gaussian (LG) modes, which carry a well-defined orbital angular momentum (OAM), consist of a complete orthogonal basis describing the transverse spatial modes of light. The application of OAM in free-space optical communication is restricted due to the experimentally limited OAM numbers and the complex OAM recognition methods. Here, we present a novel method that uses the advanced deep learning technique for LG modes recognition. By discretizing the spatial modes of structured light, we turn the OAM state regression into classification. A proof-of-principle experiment is also performed, showing that our method effectively categorizes OAM states with small training samples and the accuracy exceeds 99% from three-dimensional (3D) to fifteen-dimensional (15D) space. By assigning each category a classical information, we further apply our approach to an image transmission task, achieving a transmission accuracy of 99.58%, which demonstrates the ability to encode large data with low OAM number. This work opens up a new avenue for achieving high-capacity optical communication with low OAM number based on structured light.
Keywords:  orbital angular momentum      machine learning      optical communication  
Received:  06 August 2024      Revised:  08 October 2024      Accepted manuscript online:  10 October 2024
PACS:  03.67.-a (Quantum information)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204312, 12104190, and U21A20436), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20224BAB211014 and 20232BAB201042), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210874), the General Project of Natural Science Research in Colleges and Universities of Jiangsu Province, China (Grant No. 20KJB140008), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301705), and the China Postdoctoral Science Foundation (Grant No. 2021M702628).
Corresponding Authors:  Dong-Xu Chen, Chui-Ping Yang     E-mail:  chendx@sru.edu.cn;yangcp@hznu.edu.cn

Cite this article: 

Minyang Zhang(张敏洋), Dong-Xu Chen(陈东旭), Pengxiang Ruan(阮鹏祥), Jun Liu(刘俊), Dong-Zhi Fu(付栋之), Jun-Long Zhao(赵军龙), and Chui-Ping Yang(杨垂平) Deep-learning-assisted optical communication with discretized state space of structured light 2024 Chin. Phys. B 33 120304

[1] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[2] Chen D X, Liu R F, Zhang P, Wang Y L, Li H R, Gao H and Li F L 2017 Chin. Phys. B 26 060305
[3] Dixon P B, Howland G A, Schneeloch J and Howell J C 2012 Phys. Rev. Lett. 108 143603
[4] Cozzolino D, Bacco D, Da Lio B, Ingerslev K, Ding Y, Dalgaard K, Kristensen P, Galili M, Rottwitt K, Ramachandran S and Oxenløwe L K 2019 Phys. Rev. Appl. 11 064058
[5] Bouchard F, Fickler R, Boyd R W and Karimi E 2017 Sci. Adv. 3 e1601915
[6] Hu X M, Xing W B, Liu B H, He D Y, Cao H, Guo Y, Zhang C, Zhang H, Huang Y F, Li C F and Guo G C 2020 Optica 7 738
[7] Vértesi T, Pironio S and Brunner N 2010 Phys. Rev. Lett. 104 060401
[8] Weiss W, Benenti G, Casati G, Guarneri I, Calarco T, Paternostro M and Montangero S 2016 New J. Phys. 18 013021
[9] Fonseca A, de Rosier A, Vértesi T, Laskowski W and Parisio F 2018 Phys. Rev. A 98 042105
[10] Fickler R, Campbell G, Buchler B, Lam P K and Zeilinger A 2016 Proc. Natl. Acad. Sci. USA 113 13642
[11] Sztul H I and Alfano R R 2006 Opt. Lett. 31 999
[12] Berkhout G C G and Beijersbergen M W 2008 Phys. Rev. Lett. 101 100801
[13] Guo C S, Lu L L and Wang H T 2009 Opt. Lett. 34 3686
[14] Hickmann J M, Fonseca E J S, Soares W C and Chávez-Cerda S 2010 Phys. Rev. Lett. 105 053904
[15] Leach J, Padgett M J, Barnett S M, Franke-Arnold S and Courtial J 2002 Phys. Rev. Lett. 88 257901
[16] Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W and Padgett M J 2010 Phys. Rev. Lett. 105 153601
[17] Chen D X, Zhang P, Liu R F, Li H R, Gao H and Li F L 2015 Phys. Lett. A 379 2530
[18] Babazadeh A, Erhard M, Wang F, Malik M, Nouroozi R, Krenn M and Zeilinger A 2017 Phys. Rev. Lett. 119 180510
[19] Wen Y, Chremmos I, Chen Y, Zhu J, Zhang Y and Yu S 2018 Phys. Rev. Lett. 120 193904
[20] Brandt F, Hiekkamäki M, Bouchard F, Huber M and Fickler R 2020 Optica 7 98
[21] Chen D X, Wang Y, Wang F, Zhao J L and Yang C P 2023 Laser Photon. Rev. 17 2300277
[22] Chen Z Y and Pu J X 2009 Chin. Phys. Lett. 26 034202
[23] zhou Cui X, li Yin X, Chang H, chao Zhang Z, Jun Wang Y and hua Wu G 2017 Chin. Phys. B 26 114207
[24] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and E Willner A 2012 Nat. Photon. 6 488
[25] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E and Ramachandran S 2013 Science 340 1545
[26] Yan Y, Xie G, Lavery M P, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, F Molisch A, Tur M, J Padgett M and E Willner A 2014 Nat. Commun. 5 4876
[27] Zhang L F, Lin Y Y, She Z Y, Huang Z H, Li J Z, Luo X, Yan H, Huang W, Zhang D W and Zhu S L 2021 Phys. Rev. A 104 053525
[28] Giordani T, Suprano A, Polino E, Acanfora F, Innocenti L, Ferraro A, Paternostro M, Spagnolo N and Sciarrino F 2020 Phys. Rev. Lett. 124 160401
[29] Avramov-Zamurovic S, Esposito J M and Nelson C 2023 J. Opt. Soc. Am. A 40 64
[30] da Silva B P, Marques B A D, Rodrigues R B, Ribeiro P H S and Khoury A Z 2021 Phys. Rev. A 103 063704
[31] Guo H, Qiu X and Chen L 2022 Phys. Rev. Appl. 17 054019
[32] Zia D, Checchinato R, Suprano A, Giordani T, Polino E, Innocenti L, Ferraro A, Paternostro M, Spagnolo N and Sciarrino F 2023 Phys. Rev. Res. 5 013142
[33] Li J, Zhang M,Wang D,Wu S and Zhan Y 2018 Opt. Express 26 10494
[34] Liu J, Wang P, Zhang X, He Y, Zhou X, Ye H, Li Y, Xu S, Chen S and Fan D 2019 Opt. Express 27 16671
[35] Bhusal N, Lohani S, You C, Hong M, Fabre J, Zhao P, Knutson E M, Glasser R T and Magaña-Loaiza O S 2021 Adv. Quantum Technol. 4 2000103
[36] Na Y and Ko D K 2021 Sci. Rep. 11 23505
[37] Wang H, Zhan Z, Shen Y, Hu J, Fu X and Liu Q 2022 Opt. Express 30 29781
[38] Liu Z, Yan S, Liu H and Chen X 2019 Phys. Rev. Lett. 123 183902
[39] Na Y and Ko D K 2021 Sci. Rep. 11 2678
[40] Cao M, Yin Y, Zhou J, Tang J, Cao L, Xia Y and Yin J 2021 Appl. Phys. Lett. 119 141103
[41] Zhou J, Yin Y, Tang J, Ling C, Cao M, Cao L, Liu G, Yin J and Xia Y 2022 Phys. Rev. A 106 013519
[42] Chen S, Xie Z, Ye H, Wang X, Guo Z, He Y, Li Y, Yuan X and Fan D 2021 Light: Sci. Appl. 10 222
[43] Zhan H C, Chen B, Peng Y X,Wang L,WangWN and Zhao SM2023 Chin. Phys. B 32 044208
[44] Xu P, Tong X, Zeng Z, Liu S and Zhao D 2024 Chin. Phys. Lett. 41 074201
[45] Beijersbergen M, Allen L, van der Veen H and Woerdman J 1993 Opt. Commun. 96 123
[46] Egmont-Petersen M, de Ridder D and Handels H 2002 Pattern Recognition 35 2279
[47] Targ S, Almeida D and Lyman K 2016 arXiv:1603.08029
[48] Srinivas A, Lin T Y, Parmar N, Shlens J, Abbeel P and Vaswani A 2021 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) p. 16514
[1] Database of ternary amorphous alloys based on machine learning
Xuhe Gong(巩旭菏), Ran Li(李然), Ruijuan Xiao(肖睿娟), Tao Zhang(张涛), and Hong Li(李泓). Chin. Phys. B, 2025, 34(1): 016101.
[2] Classifying extended, localized and critical states in quasiperiodic lattices via unsupervised learning
Bohan Zheng(郑博涵), Siyu Zhu(朱思宇), Xingping Zhou(周兴平), and Tong Liu(刘通). Chin. Phys. B, 2025, 34(1): 017103.
[3] Variational data encoding and correlations in quantum-enhanced machine learning
Ming-Hao Wang(王明浩) and Hua Lü(吕桦). Chin. Phys. B, 2024, 33(9): 090307.
[4] Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(8): 080301.
[5] A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system
Bin Liu(刘斌) and Yixi Wang(王译浠). Chin. Phys. B, 2024, 33(8): 084401.
[6] Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成). Chin. Phys. B, 2024, 33(8): 087701.
[7] Physical information-enhanced graph neural network for predicting phase separation
Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文). Chin. Phys. B, 2024, 33(7): 070702.
[8] Prediction of impurity spectrum function by deep learning algorithm
Ting Liu(刘婷), Rong-Sheng Han(韩榕生), and Liang Chen(陈亮). Chin. Phys. B, 2024, 33(5): 057102.
[9] Computing large deviation prefactors of stochastic dynamical systems based on machine learning
Yang Li(李扬), Shenglan Yuan(袁胜兰), Linghongzhi Lu(陆凌宏志), and Xianbin Liu(刘先斌). Chin. Phys. B, 2024, 33(4): 040501.
[10] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[11] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[12] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[13] Recent advances in protein conformation sampling by combining machine learning with molecular simulation
Yiming Tang(唐一鸣), Zhongyuan Yang(杨中元), Yifei Yao(姚逸飞), Yun Zhou(周运), Yuan Tan(谈圆),Zichao Wang(王子超), Tong Pan(潘瞳), Rui Xiong(熊瑞), Junli Sun(孙俊力), and Guanghong Wei(韦广红). Chin. Phys. B, 2024, 33(3): 030701.
[14] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[15] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
No Suggested Reading articles found!