|
|
Deep-learning-assisted optical communication with discretized state space of structured light |
Minyang Zhang(张敏洋)1, Dong-Xu Chen(陈东旭)2,3,†, Pengxiang Ruan(阮鹏祥)1, Jun Liu(刘俊)1, Dong-Zhi Fu(付栋之)4, Jun-Long Zhao(赵军龙)2, and Chui-Ping Yang(杨垂平)5,‡ |
1 School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China; 2 Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China; 3 Jiangxi Province Key Laboratory of Applied Optical Technology (2024SSY03051), Shangrao Normal University, Shangrao 334001, China; 4 School of Cable Engineering, Henan Institute of Technology, Xinxiang 453003, China; 5 School of Physics, Hangzhou Normal University, Hangzhou 311121, China |
|
|
Abstract The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical communication. The Laguerre-Gaussian (LG) modes, which carry a well-defined orbital angular momentum (OAM), consist of a complete orthogonal basis describing the transverse spatial modes of light. The application of OAM in free-space optical communication is restricted due to the experimentally limited OAM numbers and the complex OAM recognition methods. Here, we present a novel method that uses the advanced deep learning technique for LG modes recognition. By discretizing the spatial modes of structured light, we turn the OAM state regression into classification. A proof-of-principle experiment is also performed, showing that our method effectively categorizes OAM states with small training samples and the accuracy exceeds 99% from three-dimensional (3D) to fifteen-dimensional (15D) space. By assigning each category a classical information, we further apply our approach to an image transmission task, achieving a transmission accuracy of 99.58%, which demonstrates the ability to encode large data with low OAM number. This work opens up a new avenue for achieving high-capacity optical communication with low OAM number based on structured light.
|
Received: 06 August 2024
Revised: 08 October 2024
Accepted manuscript online: 10 October 2024
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.Tx
|
(Optical angular momentum and its quantum aspects)
|
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204312, 12104190, and U21A20436), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20224BAB211014 and 20232BAB201042), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210874), the General Project of Natural Science Research in Colleges and Universities of Jiangsu Province, China (Grant No. 20KJB140008), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301705), and the China Postdoctoral Science Foundation (Grant No. 2021M702628). |
Corresponding Authors:
Dong-Xu Chen, Chui-Ping Yang
E-mail: chendx@sru.edu.cn;yangcp@hznu.edu.cn
|
Cite this article:
Minyang Zhang(张敏洋), Dong-Xu Chen(陈东旭), Pengxiang Ruan(阮鹏祥), Jun Liu(刘俊), Dong-Zhi Fu(付栋之), Jun-Long Zhao(赵军龙), and Chui-Ping Yang(杨垂平) Deep-learning-assisted optical communication with discretized state space of structured light 2024 Chin. Phys. B 33 120304
|
[1] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902 [2] Chen D X, Liu R F, Zhang P, Wang Y L, Li H R, Gao H and Li F L 2017 Chin. Phys. B 26 060305 [3] Dixon P B, Howland G A, Schneeloch J and Howell J C 2012 Phys. Rev. Lett. 108 143603 [4] Cozzolino D, Bacco D, Da Lio B, Ingerslev K, Ding Y, Dalgaard K, Kristensen P, Galili M, Rottwitt K, Ramachandran S and Oxenløwe L K 2019 Phys. Rev. Appl. 11 064058 [5] Bouchard F, Fickler R, Boyd R W and Karimi E 2017 Sci. Adv. 3 e1601915 [6] Hu X M, Xing W B, Liu B H, He D Y, Cao H, Guo Y, Zhang C, Zhang H, Huang Y F, Li C F and Guo G C 2020 Optica 7 738 [7] Vértesi T, Pironio S and Brunner N 2010 Phys. Rev. Lett. 104 060401 [8] Weiss W, Benenti G, Casati G, Guarneri I, Calarco T, Paternostro M and Montangero S 2016 New J. Phys. 18 013021 [9] Fonseca A, de Rosier A, Vértesi T, Laskowski W and Parisio F 2018 Phys. Rev. A 98 042105 [10] Fickler R, Campbell G, Buchler B, Lam P K and Zeilinger A 2016 Proc. Natl. Acad. Sci. USA 113 13642 [11] Sztul H I and Alfano R R 2006 Opt. Lett. 31 999 [12] Berkhout G C G and Beijersbergen M W 2008 Phys. Rev. Lett. 101 100801 [13] Guo C S, Lu L L and Wang H T 2009 Opt. Lett. 34 3686 [14] Hickmann J M, Fonseca E J S, Soares W C and Chávez-Cerda S 2010 Phys. Rev. Lett. 105 053904 [15] Leach J, Padgett M J, Barnett S M, Franke-Arnold S and Courtial J 2002 Phys. Rev. Lett. 88 257901 [16] Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W and Padgett M J 2010 Phys. Rev. Lett. 105 153601 [17] Chen D X, Zhang P, Liu R F, Li H R, Gao H and Li F L 2015 Phys. Lett. A 379 2530 [18] Babazadeh A, Erhard M, Wang F, Malik M, Nouroozi R, Krenn M and Zeilinger A 2017 Phys. Rev. Lett. 119 180510 [19] Wen Y, Chremmos I, Chen Y, Zhu J, Zhang Y and Yu S 2018 Phys. Rev. Lett. 120 193904 [20] Brandt F, Hiekkamäki M, Bouchard F, Huber M and Fickler R 2020 Optica 7 98 [21] Chen D X, Wang Y, Wang F, Zhao J L and Yang C P 2023 Laser Photon. Rev. 17 2300277 [22] Chen Z Y and Pu J X 2009 Chin. Phys. Lett. 26 034202 [23] zhou Cui X, li Yin X, Chang H, chao Zhang Z, Jun Wang Y and hua Wu G 2017 Chin. Phys. B 26 114207 [24] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and E Willner A 2012 Nat. Photon. 6 488 [25] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E and Ramachandran S 2013 Science 340 1545 [26] Yan Y, Xie G, Lavery M P, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, F Molisch A, Tur M, J Padgett M and E Willner A 2014 Nat. Commun. 5 4876 [27] Zhang L F, Lin Y Y, She Z Y, Huang Z H, Li J Z, Luo X, Yan H, Huang W, Zhang D W and Zhu S L 2021 Phys. Rev. A 104 053525 [28] Giordani T, Suprano A, Polino E, Acanfora F, Innocenti L, Ferraro A, Paternostro M, Spagnolo N and Sciarrino F 2020 Phys. Rev. Lett. 124 160401 [29] Avramov-Zamurovic S, Esposito J M and Nelson C 2023 J. Opt. Soc. Am. A 40 64 [30] da Silva B P, Marques B A D, Rodrigues R B, Ribeiro P H S and Khoury A Z 2021 Phys. Rev. A 103 063704 [31] Guo H, Qiu X and Chen L 2022 Phys. Rev. Appl. 17 054019 [32] Zia D, Checchinato R, Suprano A, Giordani T, Polino E, Innocenti L, Ferraro A, Paternostro M, Spagnolo N and Sciarrino F 2023 Phys. Rev. Res. 5 013142 [33] Li J, Zhang M,Wang D,Wu S and Zhan Y 2018 Opt. Express 26 10494 [34] Liu J, Wang P, Zhang X, He Y, Zhou X, Ye H, Li Y, Xu S, Chen S and Fan D 2019 Opt. Express 27 16671 [35] Bhusal N, Lohani S, You C, Hong M, Fabre J, Zhao P, Knutson E M, Glasser R T and Magaña-Loaiza O S 2021 Adv. Quantum Technol. 4 2000103 [36] Na Y and Ko D K 2021 Sci. Rep. 11 23505 [37] Wang H, Zhan Z, Shen Y, Hu J, Fu X and Liu Q 2022 Opt. Express 30 29781 [38] Liu Z, Yan S, Liu H and Chen X 2019 Phys. Rev. Lett. 123 183902 [39] Na Y and Ko D K 2021 Sci. Rep. 11 2678 [40] Cao M, Yin Y, Zhou J, Tang J, Cao L, Xia Y and Yin J 2021 Appl. Phys. Lett. 119 141103 [41] Zhou J, Yin Y, Tang J, Ling C, Cao M, Cao L, Liu G, Yin J and Xia Y 2022 Phys. Rev. A 106 013519 [42] Chen S, Xie Z, Ye H, Wang X, Guo Z, He Y, Li Y, Yuan X and Fan D 2021 Light: Sci. Appl. 10 222 [43] Zhan H C, Chen B, Peng Y X,Wang L,WangWN and Zhao SM2023 Chin. Phys. B 32 044208 [44] Xu P, Tong X, Zeng Z, Liu S and Zhao D 2024 Chin. Phys. Lett. 41 074201 [45] Beijersbergen M, Allen L, van der Veen H and Woerdman J 1993 Opt. Commun. 96 123 [46] Egmont-Petersen M, de Ridder D and Handels H 2002 Pattern Recognition 35 2279 [47] Targ S, Almeida D and Lyman K 2016 arXiv:1603.08029 [48] Srinivas A, Lin T Y, Parmar N, Shlens J, Abbeel P and Vaswani A 2021 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) p. 16514 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|