Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 024208    DOI: 10.1088/1674-1056/ad053c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence

Xinguang Wang(王新光)1,†, Yangbin Ma(马洋斌)1, Qiujie Yuan(袁邱杰)1, Wei Chen(陈伟)1, Le Wang(王乐)2, and Shengmei Zhao(赵生妹)2,3,4
1 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 Key Lab of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
4 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We analyze the properties of a focused Laguerre-Gaussian (LG) beam propagating through anisotropic ocean turbulence based on the Huygens-Fresnel principle. Under the Rytov approximation theory, we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence, and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters. It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence. The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength, greater initial beam waist radius, and larger number of transmission channels. Further, the capacity of the system increases with the decrease of the mean squared temperature dissipation rate, temperature-salinity contribution ratio and turbulence outer scale factor, and with the increase of the kinetic energy dissipation rate per unit mass of fluid, turbulence inner scale factor and anisotropy factor. Compared to a Hankel-Bessel beam with diffraction-free characteristics and unfocused LG beam, the focused LG beam shows superior anti-turbulence interference properties, which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.
Keywords:  vortex beam      orbital angular momentum      focusing mirror      anisotropic turbulence  
Received:  10 August 2023      Revised:  09 October 2023      Accepted manuscript online:  20 October 2023
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.68.Xy (Ocean optics)  
Fund: This work was supported by the Science and Technology Innovation Training Program of Nanjing University of Posts and Telecommunications (Grant No. CXXZD2023080), the National Natural Science Foundation of China (Grant Nos. 61871234 and 62001249), the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY222133), and the Open Research Fund of National Laboratory of Solid State Microstructures (Grant No. M36055).
Corresponding Authors:  Xinguang Wang     E-mail:  xg-cgb@njupt.edu.cn

Cite this article: 

Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹) Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence 2024 Chin. Phys. B 33 024208

[1] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[2] Zhan H C, Chen B, Peng Y X, Wang L, Wang W N and Zhao S M 2023 Chin. Phys. B 32 044208
[3] Guo H X, Qiu X D and Chen L X 2023 Appl. Phys. Lett. 122 061103
[4] Guzmán E A and Arzola A V 2022 J. Opt. Soc. Am. B 39 1233
[5] Chen K, Ma Z Y and Hu Y Y 2023 Chin. Phys. B 32 024208
[6] Bao X J, Zhu Y, Wang J C and Hu Z D 2014 Phys. Scr. 98 035101
[7] Yu J J, Zhang P, Ruffato G and Lin D 2022 Front Phys. 10 1026004
[8] Willner A E 2021 Opt. Photon. News 32 34
[9] Willner A E, Zhao Z, Liu C, Zhang R Z, Song H Q, Pang K, Manukyan K, Song H, Su X Z, Xie G D, Ren Y X, Yan Y, Tur M, Molisch A F, Boyd R W, Zhou H B, Hu N Z, Minoofar A and Huang H 2021 APL Photon. 6 030901
[10] Yang H B, Yan Q Z, Wang P, Hu L F and Zhang Y X 2022 Opt. Express 30 9053
[11] Ma W Q, Lu H M, Chen D Y, Jin J L and Wang J P 2022 J. Opt. 24 065701
[12] Nikishov V V and Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82
[13] Lu L, Ji X L and Baykal Y 2014 Opt. Express 22 27112
[14] Wang H, Kang F Z, Wang X, Zhao W and Sun S W 2021 Chin. Phys. B 30 064207
[15] Chang H, Yin X L, Yao H P, Wang J J, Gao G, Xin X J and Guizani M 2022 IEEE Trans. Wireless Commun. 21 11151
[16] Zhan H C, Wang L and Wang W N 2022 J. Lightwave Technol. 40 4129
[17] Pang B Q, Wang S, Cheng T, Kong Q F, Wen L H and Yang P 2017 Chin. Phys. B 26 054204
[18] Wang A T, Yu L H, Li J F and Liang X Y 2023 Chin. Phys. B 32 044201
[19] Yin X L, Guo Y L, Yan H, Cui X Z, Chang H, Tian Q H, Wu G H, Zhang Q, Liu B and Xin X J 2018 Acta Phys. Sin. 67 114201 (in Chinese)
[20] Wang X G, Yang Z and Zhao S M 2019 Optik 176 49
[21] Yu L and Zhang Y 2017 Opt. Express 25 22565
[22] Zhou M Y, Zhou Y Q, Wu G F and Cai Y J 2019 Opt. Express 27 10280
[23] Yan J L, Wei H Y, Cai D M, Jia P and Qiao T Z 2020 Acta Phys. Sin. 69 144203 (in Chinese)
[24] Wang Y K, Bai L, Zhang D M, Xie J Y, Guo Y and Guo L X 2021 IEEE Photon. J. 13 1
[25] Cao J X, Liang H J, Zhou Y Q, Wu G F and Pang X Y 2022 Front. Phys. 10 1013729
[26] Wei H Y, Yan J L, Jia P and Cai D M 2020 Acta Opt. Sin. 40 2401001 (in Chinese)
[27] Qin Y, Yang H J, Jiang P, Caiyang W N, Zhou M G and Zhou Y F 2023 Optik 272 170286
[28] Wang S L, Cheng M J, Yang X H, Xu J P and Yang Y P 2023 Opt. Express 31 20861
[29] Kotlyar V V, Khonina S N, Almazov A A and Soifer V A 2006 J. Opt. Soc. Am. A 23 43
[30] Li Y, Zhang Y X and Zhu Y 2019 Opt. Express 27 7656
[31] Li Y X, Cui Z W, Han Y P and Hu Y F 2019 J. Opt. Soc. Am. A 36 471
[32] Wang S L, Yang D H, Zhu Y and Zhang Y X 2021 Appl. Opt. 60 4135
[33] Wang X G, Wang L and Zhao S M 2021 Appl. Opt. 60 8321
[34] Arimoto S 1972 IEEE Trans. Inf. Theory 18 14
[35] Blahut R 1972 IEEE Trans. Inf. Theory 18 460
[36] Boyd R W 1980 J. Opt. Soc. Am. 70 877
[37] Feng S M and Winful H G 2001 Opt. Lett. 26 485
[38] Zhang M H, Chen Y H, Liu L and Cai Y J 2016 J. Mod. Optic. 63 2226
[39] Ren Z C, Qian S X, Tu C H, Li Y N and Wang H T 2015 Opt. Commun. 334 156
[1] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[2] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[3] Diffraction deep neural network-based classification for vector vortex beams
Yixiang Peng(彭怡翔), Bing Chen(陈兵), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034205.
[4] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[5] Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon
Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉). Chin. Phys. B, 2024, 33(1): 014211.
[6] Bessel—Gaussian beam-based orbital angular momentum holography
Jiaying Ji(季佳滢), Zhigang Zheng(郑志刚), Jialong Zhu(朱家龙), Le Wang(王乐), Xinguang Wang(王新光), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(1): 014204.
[7] Ultraviolet metalens and metalens array of focused vortex beams
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波). Chin. Phys. B, 2023, 32(6): 064206.
[8] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[9] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[10] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[11] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[12] Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
Hong Liang(梁红), Haoyuan Song(宋浩元), Yubo Li(李宇博), Di Yu(于迪), and Shufang Fu(付淑芳). Chin. Phys. B, 2023, 32(12): 124212.
[13] Generation of structure light in probe absorption spectrum via microwave-driven Y-type atomic system
Muhammad Saeed and Muqaddar Abbas. Chin. Phys. B, 2023, 32(12): 124211.
[14] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[15] Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum
Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124210.
No Suggested Reading articles found!