Abstract To explore the effect of non-uniform polarization on orbital angular momentum (OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized vortex (NUPV) beams in uniaxial crystals propagating orthogonal to the optical axis, and also the case of uniformly polarized vortex (UPV) beams with left-handed elliptical polarization. In the input plane, the NUPV beams present their spiral spectra of -mode concentrated at modes rather than mode, and reveal the relation among topological charge , mode of spiral spectra and the power weight value expressed by . The relation is still satisfied for UPV beams in uniaxially anisotropic crystals, whereas for NUPV beams their relations are no longer valid owing to non-uniform polarization. Furthermore, the analysis indicates that the asymmetrical distribution of power weight of spiral spectra and the non-zero value in the sum of longitudinal OAM densities originate from the initial non-uniform polarization and anisotropy in uniaxial crystals rather than topological charges. In addition, the relation between spiral spectrum and longitudinal OAM density is numerically discussed. This work may provide an avenue for OAM-based communications, optical metrology, and imaging by varying the initial non-uniform polarization.
(Optical angular momentum and its quantum aspects)
Fund: Project supported by the Science and Technology Program of Sichuan Province, China (Grant No. 23NSFSC1097).
Corresponding Authors:
Ke Cheng
E-mail: ck@cuit.edu.cn
Cite this article:
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩) Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals 2023 Chin. Phys. B 32 024211
[1] Pan Y, Gao X Z, Ma R D, Tu C H, Li Y N and Wang H T 2020 Chin. Opt. Lett.18 122601 [2] Alexeyev C N, Barshak E V, Lapin B P and Yavorsky M A 2018 Phys. Rev. A98 023824 [3] Han L, Qi S X, Liu S, Li P, Cheng H C and Zhao J L 2020 Chin. Phys. B29 094203 [4] Shi P, Du L P and Yuan X C 2018 Opt. Express26 23449 [5] Suzuki M, Yamane K, Oka K, Toda Y and Morita R 2016 Phys. Rev. A94 043851 [6] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L and Yuan X C 2019 Light: Sci. Appl.8 90 [7] Yang Y J, Zhao Q, Liu L L, Rosales-Guzmán C and Qiu C W 2019 Phys. Rev. Appl.12 064007 [8] Zhao Q, Dong M, Bai Y H and Yang Y J 2020 Photon. Res.8 745 [9] O'Neil A T, MacVicar I, Allen L and Padgett M J 2002 Phys. Rev. Lett.88 053601 [10] Bai Y H, Lv H R, Fu X and Yang Y J 2022 Chin. Opt. Lett.20 012601 [11] Forbes K A and Andrews D L 2019 Phys. Rev. A99 023837 [12] Bliokh K Y, Alonso M A, Ostrovskaya E A and Aiello A 2010 Phys. Rev. A82 063825 [13] Chen R P, Chew K H, Dai C Q and Zhou G Q 2017 Phys. Rev. A96 053862 [14] Sztul H I and Alfano R R 2008 Opt. Express16 9411 [15] Ji Z Y and Zhou G Q 2017 Chin. Phys. B26 094202 [16] Watkins R J, Dai K, White G, Li W, Miller J K, Morgan K S and Johnson E G 2020 Opt. Express28 924 [17] Li Y, Yu L and Zhang Y X 2017 Opt. Express25 12203 [18] Ciattoni A, Crosignani B and Porto P D 2001 J. Opt. Soc. Am. A18 1656 [19] Ciattoni A, Cincotti G, Provenziani D and Palma C 2002 Phys. Rev. E66 036614 [20] Liu D J, Wang H, Wang Y C and Yin H M 2015 Opt. & Laser Tech.73 12 [21] Shu L Y, Cheng K, Liao S, Liang M T and Zhu B Y 2021 Optik243 167464 [22] Willner A E, Huang H, Yan Y, Ren Y X, Ahmed N, Xie G D, Bao C J, Li L, Cao Y W, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N and Ashrafi S 2015 Adv. Opt. Photon.7 66 [23] Kaushal H and Kaddoum G 2017 IEEE Commun. Surv. Tutor.19 57 [24] Sun Z C, Yan M Y and Xu B J 2020 Chin. Phys. B29 104101 [25] Ciattoni A and Palma C 2003 J. Opt. Soc. Am. A20 2163 [26] Xu K, Yang Y F, He Y, Han X H and Li C F 2010 J. Opt. Soc. Am. A27 572 [27] Cheng K, Jiao L Y and Zhong X Q 2016 Opt. Commun.367 112 [28] Torner L, Torres J P and Carrasco S 2005 Opt. Express13 873 [29] Liu Y D, Gao C Q, Qi X Q and Weber H 2008 Opt. Express16 7091 [30] Kotlyar V V and Kovalev A A 2021 J. Opt. Soc. Am. A38 1276 [31] Radwell N, Hawley R D, Götte J B and Franke-Arnold S 2016 Nat. Commun.7 10564 [32] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A45 8185 [33] Enk S J V and Nienhuis G 1992 Opt. Commun.94 147 [34] Zhou G Q, Ji Z Y and Ru G Y 2016 Laser Phys.26 075002 [35] Cheng M J, Guo L X, Li J T, Huang Q Q, Cheng Q and Zhang D 2016 Appl. Opt.55 4642 [36] Kobayashi H, Nonaka K and Kitano M 2012 Opt. Express20 14064
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.