SPECIAL TOPIC — Quantum computing and quantum sensing |
Prev
Next
|
|
|
Enhanced sensing of anharmonicities in a gain-based anti-PT symmetric system |
Ya-Wei Zeng(曾亚伟), Tian-Le Yang(杨天乐), Qi-Yin Lin(林琪茵), and Wan-Jun Su(苏万钧)† |
Fujian Key Laboratory of Quantum Information and Quantum Optics and Department of Physics, Fuzhou University, Fuzhou 350116, China |
|
|
Abstract We study the enhanced sensing of weak anharmonicities in a gain-based cavity-magnon-waveguide coupled system. By dissipatively coupling the two subsystems through a mediating waveguide, the Hamiltonian of the system is tailored to be anti-parity-time symmetric. Unique to the gain condition, the eigenvalues exhibit two singularities with linewidth suppression, distinguishing them from those of gain-free systems. Under the gain condition, a counter-intuitive bistable signature emerges even at low drive powers. As the effective gain approaches a certain value, this bistability yields a significantly enhanced spin-current response of the magnon mode. Consequently, the sensitivity, quantified by an enhancement factor, is enhanced remarkably compared to the linewidth suppression scenario. Moreover, the high enhancement factor can be sustained over a broad gain-bandwidth and also stays large even when the coherent coupling becomes considerably strong. Based on the integrated cavity-magnon-waveguide systems, this scheme can be used for sensing different physical quantities related to the Kerr-type nonlinearity and has potential applications in high-precision measuring microwave-signal nonlinearities.
|
Received: 08 September 2024
Revised: 10 October 2024
Accepted manuscript online: 23 October 2024
|
PACS:
|
42.65.Pc
|
(Optical bistability, multistability, and switching, including local field effects)
|
|
47.20.Ky
|
(Nonlinearity, bifurcation, and symmetry breaking)
|
|
84.40.Xb
|
(Telemetry: remote control, remote sensing; radar)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704058 and 12174058). |
Corresponding Authors:
Wan-Jun Su
E-mail: wanjunsu@fzu.edu.cn
|
Cite this article:
Ya-Wei Zeng(曾亚伟), Tian-Le Yang(杨天乐), Qi-Yin Lin(林琪茵), and Wan-Jun Su(苏万钧) Enhanced sensing of anharmonicities in a gain-based anti-PT symmetric system 2024 Chin. Phys. B 33 124201
|
[1] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002 [2] Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Liu W and Hu C M 2020 Phys. Rev. Lett. 125 147202 [3] Nair J M P, Mukhopadhyay D and Agarwal G S 2020 Phys. Rev. Lett. 125 147202 [4] Schmitt S, Gefen T, Stürner F M, Unden T, Wolf G, Müller C, Scheuer J, Naydenov B, Markham M, Pezzagna S, Meijer J, Schwarz I, Plenio M, Retzker A, McGuinness L P and Jelezko F 2017 Science 356 832 [5] Chen W, Kaya Özdemir Ş, Zhao G, Wiersig J and Yang L 2020 Nature 548 192 [6] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2020 Nature 548 187 [7] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [8] Ja L H, Qu X H and Zhang F M 2024 Chin. Phys. B 33 094201 [9] Zhou B B, Deng W J, Wang L F, Dong L and Huang Q A 2020 Phys. Rev. Appl. 13 064022 [10] Choi Y, Hahn C, Yoon J W and Song S H 2018 Nat. Commun. 9 2182 [11] Xiao Z, Li H, Kottos T and Alù A 2019 Phys. Rev. Lett. 123 213901 [12] Liu Z P, Zhang J, Özdemir K, Peng B, Jing H, Lü X Y, Li C W, Yang L, Nori F and Liu Y X 2016 Phys. Rev. Lett. 125 147202 [13] Chen P Y and Jung J 2016 Phys. Rev. Lett. 117 110802 [14] Wang J, Mukhopadhyay D and Agarwal G S 2022 Phys. Rev. Res. 4 013131 [15] Wiersig J 2016 Phys. Rev. A 93 033809 [16] Li Y Y, Cao Q T, Chen J H, Yu X C and Xiao Y F 2021 Phys. Rev. Appl. 16 044016 [17] Li Y, Deng Z, Qin C, Wan S, Lv B, Guan C, Yang J, Zhang S and Shi J 2023 Opt. Express 31 492 [18] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [19] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401 [20] Bender C M, Berry M V and Mandilara A 2002 J. Phys. A: Math. Gen. 35 L467 [21] Xu X W, Liu Y X, Sun C P and Li Y 2015 Phys. Rev. A 92 013852 [22] Lü X Y, Jing H, Ma J Y and Wu Y 2015 Phys. Rev. Lett. 114 253601 [23] Yang F, Liu Y C and You L 2017 Phys. Rev. A 96 053845 [24] Fang Y L, Zhao J L, Chen D X, Zhou Y H, Zhang Y and Nori F 2022 Phys. Rev. Res. 4 033022 [25] Feng Z and Sun X 2022 Phys. Rev. Lett. 129 273601 [26] Liu C W, Liu Y, Du L, Su W J, Wu H and Li Y 2023 Opt. Express 31 9236 [27] Li Y, Peng Y G, Han L, Miri M A, LiW, Xiao M, Zhu X F, Zhao J, Alù A, Fan S and Qiu C W 2019 Science 364 170 [28] Zhang H, Huang R, Zhang S D, Li Y, Qiu CW, Nori F and Jing H 2020 Nano Lett. 125 147202 [29] Mukhopadhyay D, Nair J M P and Agarwal G S 2022 Phys. Rev. B 105 064405 [30] Qin Y, Chen H, Luo D, Pan C, Hu H, Zhang Y and Wei D 2021 Opt. Express 29 29175 [31] Luo X W, Zhang C and Du S 2022 Phys. Rev. Lett. 128 173602 [32] Zhang H L, Peng M Y, Xu X W and Jing H 2022 Chin. Phys. B 31 014215 [33] Geng J T, Xu S Y, Jin T, Ding S L, Yang L, Wang Y and Zhang Y G 2024 Chin. Phys. B 33 014208 [34] Zhang F, Feng Y, Chen X, Ge L and Wan W 2020 Phys. Rev. Lett. 124 053901 [35] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao 2014 Nat. Photon. 8 524 [36] Lü H, Özdemir S K, Kuang L M, Nori F and Jing H 2017 Phys. Rev. Appl. 8 044020 [37] Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604 [38] Sunada S 2017 Phys. Rev. A 96 033842 [39] Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L and Hu C M 2018 Phys. Rev. Lett. 121 137203 [40] Yang Y, Rao J W, Gui Y S, Yao B M, Lu W and Hu C M 2019 Phys. Rev. Appl. 11 054023 [41] Peng Z H, Jia C X, Zhang Y Q, Yuan J B and Kuang L M 2020 Phys. Rev. A 102 043527 [42] Xu H, Mason D, Jiang L and Harris J G E 2016 Nature 537 80 [43] Kawabata K, Bessho T and Sato M 2019 Phys. Rev. Lett. 123 066405 [44] Ergoktas M S, Soleymani S, Kakenov N, Wang K, Smith T B, Bakan G, Balci S, Principi A, Novoselov K S Ozdemir S K and Kocabas C 2022 Science 376 184 [45] Cai R, Jin Y, Li Y, Rabczuk T, Pennec Y, DjafariRouhani B and Zhuang X 2022 Phys. Rev. Appl. 18 014607 [46] Gu Z, Gao H, Liu T, Liang S, An S, Li Y and Zhu J 2021 Phys. Rev. Appl. 15 014025 [47] Yu S, Meng Y, Tang J S, Xu X Y, Wang Y T, Yin P, Ke Z J, Liu W, Li Z P, Yang Y Z, Chen G, Han Y J, Li C F and Guo G C 2020 Phys. Rev. Lett. 125 240506 [48] Sharma S, Kani A and Bhattacharya M 2022 Phys. Rev. A 105 147202 [49] Özdemir Ş K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783 [50] Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J and Xu H X 2010 Nano Lett. 10 1021 [51] Lassalle E, Lalanne P, Aljunid S, Genevet P, Stout B, Durt T and Wilkowski D 2020 Phys. Rev. A 101 013837 [52] Thanopulos I, Yannopapas V and Paspalakis E 2017 Phys. Rev. B 95 075412 [53] Bernier A R, Tóth L D, Feofanov A K and Kippenberg T J 2018 Phys. Rev. A 98 023841 [54] Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L and Hu C M 2018 Phys. Rev. Lett. 121 137203 [55] Nair J M P, Mukhopadhyay D and Agarwal G S 2021 Phys. Rev. B 103 224401 [56] Rao J W, Wang Y P, Yang Y, Yu T, Gui Y S, Fan X L, Xue D S and Hu C M 2020 Phys. Rev. B 101 064404 [57] Bhoi B, Kim B, Jang S H, Kim J, Yang J, Cho Y J and Kim S K 2019 Phys. Rev. B 99 134426 [58] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q and Hu C M 2019 Phys. Rev. Lett. 123 127202 [59] Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M and You J Q 2016 Phys. Rev. B 94 224410 [60] Xiong W, Tian M, Zhang G Q and You J Q 2022 Phys. Rev. B 105 245310 [61] Shen R C, Li J, Fan Z Y, Wang Y P and You J Q 2022 Phys. Rev. Lett. 129 123601 [62] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904 [63] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902 [64] Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394 [65] Zhao C, Peng R, Yang Z, Chao S, Li C,Wang Z and Zhou L 2022 Phys. Rev. A 105 023709 [66] Li Y, Yefremenko V G, Lisovenko M, Trevillian C, PolakovicT, Cecil T W, Barry P S, Pearson J, Divan R, Tyberkevych V, Chang C L, Welp U, Kwok W K and Novosad V 2022 Phys. Rev. Lett. 128 047701 [67] Qian J, Meng C H, Rao J W, Rao Z J, An Z, Gui Y and Hu C M 2023 Nat. Commun. 14 3437 [68] Cui D, Li J, Li F, Shi Z C and Yi X X 2023 Phys. Rev. A 107 013709 [69] Bernier N R, Tóth L D, Feofanov A K and Kippenberg T J 2018 Phys. Rev. A 98 023841 [70] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|