Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124209    DOI: 10.1088/1674-1056/ace767
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Multi-channel generation of vortex beams with controllable polarization states and orbital angular momentum

Ziyao Lyu(吕子瑶)1, Pan Wang(王潘)2, and Changshun Wang(王长顺)1,†
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 School of Data Science, The Chinese University of Hong Kong, Shenzhen 518172, China
Abstract  Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication. However, this kind of structured light beams is usually generated using several polarization and spatial phase devices, which decreases the configurability of optical systems. Here, we have designed a kind of polarized optical multi-vortices generator based on the Stokes-Mueller formalism and cross-phase modulation. In our scheme, multi-channel generation of polarized vortex beams can be realized through a single optical element and a single-input Gaussian beam. The polarization states and orbital angular momentum of the generated light beams are all-optically controllable. Furthermore, the proposed polarized optical multi-vortices generator has also been demonstrated experimentally through one-step holographic recording in an azobenzene liquid-crystalline film and the experimental results agree with theoretical analysis.
Keywords:  light field modulation      holography      optical vortex      polarization  
Received:  19 May 2023      Revised:  30 June 2023      Accepted manuscript online:  14 July 2023
PACS:  42.40.Eq (Holographic optical elements; holographic gratings)  
  42.81.Gs (Birefringence, polarization)  
  42.30.Lr (Modulation and optical transfer functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.92050116).
Corresponding Authors:  Changshun Wang     E-mail:  cswang@sjtu.edu.cn

Cite this article: 

Ziyao Lyu(吕子瑶), Pan Wang(王潘), and Changshun Wang(王长顺) Multi-channel generation of vortex beams with controllable polarization states and orbital angular momentum 2023 Chin. Phys. B 32 124209

[1] Zhu Z, Janasik M, Fyffe A, et al. 2021 Nat. Commun. 12 1666
[2] Zhang Z, Qiao X, Midya B, et al. 2020 Science 368 760
[3] Paroli B, Siano M and Potenza M A C 2021 Opt. Express 29 14412
[4] Ellis A D, McCarthy M E, Al-Khateeb M A Z, Sorokina M and Doran N J 2021 Adv. Opt. Photonics 9 429
[5] Xia M, Yin Y, Pei C, et al. 2021 Chin. Phys. B 30 114202
[6] Zhang X H, Wang F L, Bai L Y, et al. 2020 Chin. Phys. B 29 064204
[7] Xue X J, Xu B J, Wu B R, et al. 2023 Chin. Phys. B 32 024215
[8] Vitullo D L P, Leary C C, Gregg P, Smith R A, Reddy D V, Ramachandran S and Raymer M G 2017 Phys. Rev. Lett. 118 083601
[9] Li P, Wu D, Liu S, et al. 2018 Chin. Phys. B 27 114201
[10] Picardi M F, Bliokh K Y, Rodríguez-Fortuño F J, Alpeggiani F and Nori F 2018 Optica 5 1016
[11] Wł odarczyk P, Pustelny S and Budker D 2019 Rev. Sci. Instrum. 90 013110
[12] Liu Q, Wei Q, Ren H, Zhou L, Zhou Y, Wang P, Wang C, Yin J and Li M 2018 Optica 5 263
[14] Kwon M S, Oh B Y, Gong S H, et al. 2019 Phys. Rev. Lett. 122 045302
[15] Liu A, Wu M, Zhuang R, et al. 2020 Opt. Express 28 17957
[16] Woźniak P, Leon I D, Höflich K, et al. 2019 Optica 6 961
[17] Wang J 2016 Photonics Res. 4 B14
[18] Fang X, Ren H and Gu M 2019 Nat. Photonics 14 102
[19] Xie J, Guo H, Zhuang S and Hu J 2021 Opt. Express 29 3081
[20] Zhu L and Wang J 2019 Front. Optoelectron. 12 52
[21] Biener G, Gorodetski Y, Niv A, Kleiner V and Hasman E 2006 Opt. Lett. 31 1594
[22] Zhang L, Chen M Z, Tang W, et al. 2021 Nat. Electron. 4 218
[23] Zhu L, Zhu G, Wang A, et al. 2018 Opt. Lett. 43 1890
[24] Zhu L, Wang A, Deng M, Lu B and Guo X 2021 Sci. Rep. 11 12012
[25] Soleimani P, Khoshsima H and Yeganeh M 2022 Sci. Rep. 12 21271
[26] Yao A M and Padgett M J 2011 Adv. Opt. Photonics 3 161
[27] Chen M L N, Jiang L J and Sha W E I 2018 Appl. Sci. 8 362
[28] Wang H, Fu S and Gao C 2022 Opt. Express 30 34053
[29] Shang Z, Fu S, Hai L, et al. 2021 Opt. Express 29 10811
[30] Fu S, Wang T, Zhang Z, et al. 2017 Appl. Phys. Lett. 110 191102
[31] Fu S, Shang Z, Hai L, et al. 2022 Adv. Photonics Nexus 1 016003
[32] Kikuchi K 2020 Opt. Express 28 26007
[33] Mannan S, Zaffar M, Pradhan A and Basu S 2016 Appl. Optics 55 8971
[34] Samim M, Krouglov S and Barzda V 2016 Phys. Rev. A 93 013847
[35] Lu S Y and Chipman R A 1996 J. Opt. Soc. Am. A 13 1106
[36] Hao D, Tang X, Wang W, et al. 2021 Chin. Phys. B 30 096805
[37] Huang L, Chen X, Mühlenbernd H, et al. 2012 Nano Lett. 12 5750
[38] Stoyanov L, Topuzoski S, Stefanov I, Janicijevic L and Dreischuh A 2015 Opt. Commun. 350 301
[39] Bekshaev A Y and Orlinska O V 2010 Opt. Commun. 283 1244
[40] Topuzoski S and Janicijevic L 2023 Opt. Commun. 530 129176
[41] Ma L B, Li S L, Fomin V M, et al. 2016 Nat. Commun. 7 10983
[1] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[2] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[3] Impact of annealing temperature on the ferroelectric properties of W/Hf0.5Zr0.5O2/W capacitor
Dao Wang(王岛), Yan Zhang(张岩), Yongbin Guo(郭永斌), Zhenzhen Shang(尚真真), Fangjian Fu(符方健), and Xubing Lu(陆旭兵). Chin. Phys. B, 2023, 32(9): 097701.
[4] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[5] Real-time and high-transmission middle-infrared optical imaging system based on a pixel-wise metasurface micro-polarization array
Lifeng Ma(马丽凤), Shan Du(杜杉), Jun Chang(常军), Weilin Chen(陈蔚霖), Chuhan Wu(武楚晗), Xinxin Shi(石鑫鑫), Yi Huang(黄翼), Yue Zhong(钟乐), and Quanquan Mu(穆全全). Chin. Phys. B, 2023, 32(8): 084201.
[6] High efficiency and high transmission asymmetric polarization converter with chiral metasurface in visible and near-infrared region
Yuhang Gao(高雨航), Yu Tian(田宇), Qingguo Du(杜庆国), Yuanli Wang(王原丽), Qin Fu(付琴), Qiang Bian(卞强), Zhengying Li(李政颖), Shuai Feng(冯帅), and Fangfang Ren(任芳芳). Chin. Phys. B, 2023, 32(7): 074201.
[7] Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志). Chin. Phys. B, 2023, 32(6): 060301.
[8] Single-electron transport in H2O@C60 single-molecule transistors
Bowen Liu(刘博文), Jun Chen(陈俊), Yiping Ouyang(欧阳一平), Minhao Zhang(张敏昊), Yuan-Zhi Tan(谭元植), and Fengqi Song(宋凤麒). Chin. Phys. B, 2023, 32(6): 063601.
[9] A miniaturized spin-exchange relaxation-free atomic magnetometer based on uniform light field
Jiajie Li(李佳洁), Xiujie Fang(房秀杰), Renjie Li(李任杰), Baodong Chen(陈宝栋), Yueyang Zhai(翟跃阳), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(5): 053201.
[10] Magic wavelengths for 6s1/2 → 5d3/2,5/2 transitions of Yb+ ions
Ting Chen(陈婷), Lei Wu(吴磊), Ru-Kui Zhang(张儒奎), Yong-Bo Tang(唐永波), Jun Jiang(蒋军), and Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2023, 32(5): 053206.
[11] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[12] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[13] Extension of sound field reconstruction based on element radiation superposition method in a sparsity framework
Yuan Gao(高塬), Bo-Quan Yang(杨博全), Sheng-Guo Shi(时胜国), and Hao-Yang Zhang(张昊阳). Chin. Phys. B, 2023, 32(4): 044302.
[14] Lightweight broadband microwave absorbing metamaterial with CB-ABS composites fabricated by 3D printing
Meng-Zhou Chen(陈孟州), Liu-Ying Wang(汪刘应), Gu Liu(刘顾), Chao-Qun Ge(葛超群), Di-Chen Li(李涤尘), and Qing-Xuan Liang(梁庆宣). Chin. Phys. B, 2023, 32(4): 048103.
[15] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
No Suggested Reading articles found!