SPECIAL TOPIC — Quantum communication and quantum network |
Prev
Next
|
|
|
Mask-coding-assisted continuous-variable quantum direct communication with orbital angular momentum multiplexing |
Zhengwen Cao(曹正文), Yujie Wang(王禹杰), Geng Chai(柴庚)†, Xinlei Chen(陈欣蕾), and Yuan Lu(卢缘) |
Laboratory of Quantum Information & Technology, School of Information Science and Technology, Northwest University, Xi'an 710127, China |
|
|
Abstract Quantum secure direct communication (QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly on a quantum channel with QSDC. Higher channel capacity and noise suppression capabilities are key to achieving long-distance quantum communication. Here, we report a continuous-variable QSDC scheme based on mask-coding and orbital angular momentum, in which the mask-coding is employed to protect the security of the transmitting messages and to suppress the influence of excess noise. The combination of orbital angular momentum and information block transmission effectively improves the secrecy capacity. In the 800 information blocks×1310 bits length 10-km experiment, the results show a statistical average bit error rate of 0.38 %, a system excess noise value of 0.0184 SNU, and a final secrecy capacity of 6.319$\times10^{6}$ bps. Therefore, this scheme reduces error bits while increasing secrecy capacity, providing a solution for long-distance large-scale quantum communication, which is capable of transmitting text, images and other information of reasonable size.
|
Received: 26 September 2024
Revised: 06 December 2024
Accepted manuscript online: 17 December 2024
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071381 and 62301430), Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 23JSY014), Scientific Research Plan Project of Shaanxi Education Department (Natural Science Special Project (Grant No. 23JK0680)), and Young Talent Fund of Xi’an Association for Science and Technology (Grant No. 959202313011). |
Corresponding Authors:
Geng Chai
E-mail: chai.geng@nwu.edu.cn
|
Cite this article:
Zhengwen Cao(曹正文), Yujie Wang(王禹杰), Geng Chai(柴庚)†, Xinlei Chen(陈欣蕾), and Yuan Lu(卢缘) Mask-coding-assisted continuous-variable quantum direct communication with orbital angular momentum multiplexing 2025 Chin. Phys. B 34 020308
|
[1] Pirandola S, Andersen U L, Banchi L, et al. 2020 Advances in Optics and Photonics 12 1012 [2] Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7 [3] Cao Z W, Chen X L, Chai G, Liang K X and Yuan Y 2023 Phys. Rev. Applied 19 044023 [4] Jouguet P, Kunz-Jacques S, Diamanti E, et al. 2012 Phys. Rev. A 86 032309 [5] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575 [6] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902 [7] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [8] Pan D, Long G L, Yin L, et al. 2024 IEEE Communications Surveys& Tutorials 26 1898 [9] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 J. Phys. A: Math. Gen. 35 L407 [10] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2001 arXiv:quant-ph/0111106[quant-ph] [11] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301 [12] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317 [13] Deng F G and Long G L 2004 Phys. Rev. A 69 052319 [14] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [15] Ekert A K 1991 Phys. Rev. Lett. 67 661 [16] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15 [17] Jin X R, Ji X, Zhang Y Q, Zhang S, Hong S K, Yeon K H and Um C I 2006 Phys. Lett. A 354 67 [18] Sun Z, Qi R, Lin Z, Yin L, Long G and Lu J 2018 IEEE Globecom Workshops (GC Wkshps), December 09-13, 2018, Abu Dhabi, United Arab Emirates, p. 1 [19] Sun Z, Song L, Huang Q, et al. 2020 IEEE Transactions on Communications 68 5778 [20] Zhou L, Sheng Y B and Long G L 2020 Science Bulletin 65 12 [21] Zhou L, Xu B W, Zhong W, et al. 2023 Phys. Rev. Applied 19 014036 [22] Zhou Z R, Sheng Y B, Niu P H, et al. 2020 Sci. China Phys. Mech. Astron. 63 230362 [23] Yan Y F, Zhou L, Zhong W and Sheng Y B 2021 Front. Phys. 16 11501 [24] Hong Y P, Zhou L, Zhong W, et al. 2023 Quantum Inf. Process 22 111 [25] Zhou L, Xu B W, Zhong W and Sheng Y B 2023 Phys. Rev. Applied 19 014036 [26] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501 [27] Zhu F, Zhang W, Sheng Y and Huang Y 2017 Science Bulletin 62 1519 [28] Qi R Y, Sun Z, Lin Z S, et al. 2019 Light Sci. Appl. 8 22 [29] Cao Z, Lu Y, Chai G, Yu H, Liang K X and Wang L 2023 Research 6 0193 [30] Wang L, Chai G, Cao Z W and Chen X L 2025 Sci. China Phys. Mech. Astron. 68 220313 [31] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185 [32] Mafu M, Dudley A, Goyal S, et al. 2013 Phys. Rev. A 88 032305 [33] Cheng W, Guilley S and Danger J L 2022 IEEE Transactions on Information Forensics and Security 17 1624 [34] Cao Z W, Chen X L, Chai G and Peng J Y 2023 Laser Phys. Lett. 20 045201 [35] Li D, Huang P, Zhou Y, et al. 2018 IEEE Photonics Journal 10 1 [36] Long G L and Zhang H 2021 Science Bulletin 13 1267 [37] Srikara S, Thapliyal K and Pathak A 2020 Quantum Inf. Process 19 132 [38] Cao Z, Wang L, Liang K, Chai G and Peng J Y 2021 Phys. Rev. Applied 16 024012 [39] Jin D, Guo Y, Wang Y J and Huang D 2020 J. Appl. Phys. 127 213102 [40] Liang K X, Cao Z W, Chen X L, Wang L, Chai G and Peng J Y 2023 Front. Phys. 18 51301 [41] Wu J W, Lin Z S, Yin L G and Long G L 2019 Quantum Engineering 1 51301 [42] Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D and Peng K C 2005 Phys. Rev. A 85 040305(R) [43] Chai G, Yuan Y, Cao Z W, Yu H, Chen X L and Peng J Y 2023 Phys. Rev. Applied 20 054037 [44] Rendell R W and Rajagopal A K 2005 Phys. Rev. A 72 012330 [45] Jouguet P, Kunz-Jacques S, Diamanti E and Leverrier A 2012 Phys. Rev. A 86 032309 [46] Chai G, Liang K X, Liu W Q, Huang P, Cao Z W and Zeng G H 2019 Int. J. Theor. Phys. 5 3746 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|