Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
SPECIAL TOPIC—Optical field manipulation |
Prev
Next
|
|
|
Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes |
Beiyu Wang(汪倍羽)1, Jiaxin Han(韩嘉鑫)1, and Cheng Jin(金成)1,2,† |
1 Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China; 2 MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract The extreme ultraviolet (XUV) light beam carrying orbital angular momentum (OAM) can be produced via high-order harmonic generation (HHG) due to the interaction of an intense vortex infrared laser and a gas medium. Here we show that the OAM spectrum of vortex HHG can be readily tailored by varying the radial node (from 0 to 2) in the driving laser consisting of two mixed Laguerre-Gaussian (LG) beams. We find that due to the change in spatial profile of HHG, the distribution range of the OAM spectrum can be broadened and its shape can be modified by increasing the radial node. We also show that the OAM mode range becomes much wider and its distribution shape becomes more symmetric when the harmonic order is increased from the plateau to the cutoff when the driving laser has the nonzero radial nodes. Through the map of coherence length and the evolution of harmonic field in the medium, we reveal that the favorable off-axis phase-matching conditions are greatly modified due to the change of intensity and phase distributions of driving laser with the radial node. We anticipate this work to stimulate some interests in generating the XUV vortex beam with tunable OAM spectrum through the gaseous HHG process achieved by manipulating the mode properties of the driving laser beam.
|
Received: 04 July 2023
Revised: 26 September 2023
Accepted manuscript online: 09 October 2023
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
78.47.jh
|
(Coherent nonlinear optical spectroscopy)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12274230, 91950102, and 11834004) and the Funding of Nanjing University of Science and Technology (Grant No.TSXK2022D005). |
Corresponding Authors:
Cheng Jin
E-mail: cjin@njust.edu.cn
|
Cite this article:
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成) Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes 2023 Chin. Phys. B 32 124208
|
[1] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L and Yuan X C 2019 Light: Sci. Appl. 8 90 [2] Omatsu T, Miyamoto K and Lee A J 2017 J. Opt. 19 123002 [3] Yao A M and Padgett M J 2011 Adv. Opt. Photonics 3 161 [4] Padgett M J and Miles J 2017 Opt. Express 25 11265 [5] Picón A, Benseny A, Mompart J, Vázquez de Aldana J R, Plaja L, Calvo G F and Roso L 2010 New J. Phys. 12 083053 [6] Alexandrescu A, Cojoc D and Di Fabrizio E 2006 Phys. Rev. Lett. 96 243001 [7] Babiker M, Bennett C R, Andrews D L and Davila Romero L C 2002 Phys. Rev. Lett. 89 143601 [8] Giri S, Ivanov M and Dixit G 2020 Phys. Rev. A 101 033412 [9] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185 [10] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M and Willne A E 2012 Nat. Photonics 6 488 [11] Bozinovic N, Yue Y, Ren Y X, Tur M, Kristensen P, Huang H, Willner A E and Ramachandran S 2013 Science 340 1545 [12] Lei T, Zhang M, Li Y, Jia P, Liu G N, Xu X, Li Z, Min C, Lin J, Yu C, Niu H and Yuan X 2015 Light: Sci. Appl. 4 e257 [13] Fu S Y, Zhai Y W, Zhou H, Zhang J Q, Wang T L, Yin C and Gao C Q 2019 Opt. Lett. 44 4753 [14] Granata M, Buy C, Ward R and Barsuglia M 2010 Phys. Rev. Lett. 105 231102 [15] Andreas N, Christina B and Benno W 2017 Opt. Lett. 42 751 [16] Padgett M J and Bowman R W 2011 Nat. Photonics 5 343 [17] Yang Y J, Ren Y X, Chen M Z, Arita Y and Rosales-Guzmán C 2021 Adv. Photonics 3 034001 [18] Götte J B, O’Holleran K, Preece D, Flossmann F and Padgett M J 2008 Opt. Express 16 993 [19] Mafu M, Dudley A, Goyal S K, Giovannini D, Mclaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A 88 032305 [20] Lavery M P J, Speirits F C, Barnett S M and Padgett M J 2013 Science 341 537 [21] Fu S Y, Wang T L, Zhang Z Y, Zhai Y W and Gao C Q 2017 Opt. Express 25 20098 [22] Belmonte A, Rosales-Guzman C and Torres J P 2015 Optica 2 1002 [23] Paez-López R, Ruiz U, Arrizon V and Ramos-Garcia R 2016 Opt. Lett. 41 4138 [24] Tao S H, Yuan X C and Lin J 2005 Opt. Express 13 7726 [25] D’Ambrosio V, Spagnolo N, Del Re L, Slussarenko S, Li Y, Kwek L C, Marrucci L, Walborn S P, Aolita L and Sciarrino F 2013 Nat. Commun. 4 2432 [26] Andersen M F, Ryu C, Clade P, Natarajan V, Vaziri A, Helmerson K and Phillips W D 2006 Phys. Rev. Lett. 97 170406 [27] Xie G D, Song H Q, Zhao Z, Milione G and Willner A E 2017 Opt. Lett. 42 4482 [28] Li F S, Xu T Z, Zhang W H, Qiu X D, Lu X C and Chen L X 2018 Appl. Phys. Lett. 113 161109 [29] Zhu L and Wang J 2015 Opt. Express 23 26221 [30] Chen S M, Yuan C, Li G X, Zhang S and Cheah K W 2016 Laser Photonics Rev. 10 322 [31] Xiao Q X, Klitis C, Li S M, Chen Y Y, Cai X L, Sorel M and Yu S Y 2016 Opt. Express 24 3168 [32] Li H L, Strain M J, Meriggi L, Chen L F, Zhu J B, Cicek K, Wang J W, Cai X L, Sorel M, Thompson G M and Yu S Y 2015 Appl. Phys. Lett. 107 051102 [33] Kapale K T and Dowling J P 2005 Phys. Rev. Lett. 95 173601 [34] Li X F, L’Huillier A, Ferray M, Lompre L A and Mainfray G 1989 Phys. Rev. A 39 5751 [35] Hoflund M, Peschel J, Plach M, Dacasa H, Veyrinas K, Constant E, Smorenburg P, Wikmark H, Maclot S, Guo C, Arnold C, L’Huillier A and Eng-Johnsson P 2021 Ultrafast Sci. 2021 9797453 [36] Lang Y, Peng Z and Zhao Z 2022 Chin. Phys. Lett. 39 114201 [37] Guo X L, Jin C, He Z, Zhao S F, Zhou X X and Cheng Y 2021 Chin. Phys. Lett. 38 123301 [38] Zhang H, Liu X, Jin F, Zhu M, Yang S, Dong W, Song X and Yang W 2021 Chin. Phys. Lett. 38 063201 [39] Wang S, Guo J, He X, Liang Y, Xie B, Zhong S, Teng H and Wei Z 2023 Chin. Phys. B 32 063301 [40] Xing Y H, Zhang J, Huo X X, Xu Q Y and Liu X S 2022 Chin. Phys. B 31 043203 [41] He L X, Zhu X S, Cao W, Lan P F and Lu P X 2022 Chin. Phys. B 31 123301 [42] Rego L, Dorney K M, Brooks N J, Nguyen Q L, Liao C T, Roman J S, Couch D E, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn H C, Murnane M M and Hernandez-Garc ıa C 2019 Science 364 eaaw9486 [43] Hernadez-Garc ıa C, Vieira J, Mendona J T, Rego L, Roman J S, Plaja L, Ribic P R, Gauthier D and Pic on A 2017 Photonics 4 28 [44] Gauthier D, Ribic P R, Adhikary G, Camper A, Chappuis C, Cucini R, DiMauro L F, Dovillaire G, Frassetto F, Geneaux R, Miotti P, Poletto L, Ressel B, Spezzani C, Stupar M, Ruchon T and Ninno G D 2017 Nat. Commun. 8 14971 [45] Kong F, Zhang C, Bouchard F, Li Z, Brown G G, Ko D H, Hammond T J, Arissian L, Boyd R W, Karimi E and Corkum P B 2017 Nat. Commun. 8 14970 [46] Sanson F, Pandey A K, Harms F, Dovillaire G, Baynard E, Demailly J, Guilbaud O, Lucas B, Neveu O, Pittman M, Ros D, Richardson M, Johnson E, Li W, Balcou P and Kazamias S 2018 Opt. Lett. 43 2780 [47] Sanson F, Pandey A K, Papagiannouli I, Harms F, Dovillaire G, Baynard E, Demailly J, Guilbaud O, Lucas B, Neveu O, Pittman M, Ros D, Richardson M, Johnson E, Li W, Balcou P and Kazamias S 2020 Opt. Lett. 45 4790 [48] Rego L, Roman J S, Picón A, Picón L and Hern andez-Garc ıa C 2016 Phys. Rev. Lett. 117 163202 [49] Paufler W, Boing B and Fritzsche S 2019 J. Opt. 21 094001 [50] Paufler W, Boing B and Fritzsche S 2019 Phys. Rev. A 100 013422 [51] Jin C, Li B C, Wang K, Xu C H and Lin C D 2020 Phys. Rev. A 102 033113 [52] Guan Z, Yin Z M and Jin C 2022 Phys. Rev. A 105 023107 [53] Hernadez-Garc ıa C, Picon A, Rom an J S and Plaja L 2013 Phys. Rev. Lett. 111 083602 [54] Hernadez-Garc ıa C, Roman J S, Plaja L and Picón A 2015 New J. Phys. 17 093029 [55] Telnov D A and Chu S I 2017 Phys. Rev. A 96 033807 [56] Paufler W, Boing B and Fritzsche S 2018 Phys. Rev. A 98 011401 [57] Wang Z, Hong W Y, Wang F and Liao Q 2020 Phys. Rev. Res. 2 033482 [58] Abro N, Wang K, Zhu X H, Li B C and Jin C 2018 Phys. Rev. A 98 023411 [59] Han J, Tang X, Yin Z, Wang K, Fu Y, Wang B, Chen Y, Zhang C and Jin C 2022 Opt. Express 30 47942 [60] Le A T, Lucchese R R, Tonzani S, Morishita T and Lin C D 2009 Phys. Rev. A 80 013401 [61] Lin C D, Le A T, Jin C and Wei H 2018 J. Phys. B 51 104001 [62] Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [63] Jin C, Le A T, Trallero-Herrero C A and Lin C D 2011 Phys. Rev. A 84 043411 [64] D’Errico A, D’Amelio R, Piccirillo B, Cardano F and Marrucci L 2017 Optica 4 1350 [65] Zhang L G, Shen B F, Bu Z G, Zhang X M, Ji L L, Huang S, Xiriai M, Xu Z L, Liu C and Xu Z Z 2021 Phys. Rev. Appl. 16 014065 [66] Lewenstein M, Salieres P and L’Huillier A 1995 Phys. Rev. A 52 4747 [67] Gaarde M B and Schafer K J 2002 Phys. Rev. A 65 031406 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|