Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 044201    DOI: 10.1088/1674-1056/ad1e67
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Accelerated generation of holograms with ultra-low memory symmetrically high-compressed look-up table

Yan Yang(杨燕)1,2, Jianying Zhu(朱建英)1,2, Minyuan Sun(孙敏远)1, and Yong Bi(毕勇)1,†
1 Applied Laser Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Computer-generated holography technology has been widely applied, and as research in this field deepens, the demand for memory and computational power in small AR and VR devices continues to increase. This paper presents a hologram generation method, i.e., a symmetrically high-compressed look-up table method, which can reduce memory usage by 50%. In offline computing, half of the basic horizontal and vertical modulation factors are stored, halving the memory requirements without affecting inline speed. Currently, its potential extends to various holographic applications, including the production of optical diffraction elements.
Keywords:  computergenerated hologram      look-up table      holography  
Received:  07 November 2023      Revised:  11 January 2024      Accepted manuscript online:  15 January 2024
PACS:  42.40.Jv (Computer-generated holograms)  
  42.40.-i (Holography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62205350), the Special Project of Central Government Guiding Local Science and Technology Development in Beijing 2020 (Grant No. Z20111000430000), and the Guangxi Nanning Key R&D Program (Grant No. 20233067).
Corresponding Authors:  Yong Bi     E-mail:  biyong@mail.ipc.ac.cn

Cite this article: 

Yan Yang(杨燕), Jianying Zhu(朱建英), Minyuan Sun(孙敏远), and Yong Bi(毕勇) Accelerated generation of holograms with ultra-low memory symmetrically high-compressed look-up table 2024 Chin. Phys. B 33 044201

[1] Zuo Chao and Chen Qian 2022 Infr. Laser Engin. 51 20220110
[2] De Oliveira I and Miyazawa K 2023 Opt. Commun. 546 129764
[3] Song Q, Xi J, Wang S, et al. 2023 Opt. Commun. 546 129801
[4] Sirohi R 2022 Light:Adv. Manufact. 3 35
[5] Kozacki T, Mikula-Zdańkowska M, Martinez-Carranza J and Idicula M S 2021 Opt. Express 29 21965
[6] Wang Y, Zhang X, Zhao Q, Yao Y, Yan P and Wang B 2022 Chin. Phys. B 31 034202
[7] Boudaoud F and Lemerini M 2015 Chin. Phys. B 24 075205
[8] Xiao D, Li X, Liu S J and Wang Q H 2018 Opt. Commun. 410 488
[9] Kim Y H, Choi K H, Baek I B, et al. 2023 Opt. Commun. 546 129818
[10] Choo H G, Kozacki T, Zaperty W, Chlipala M, Lim Y and Kim J 2019 Appl. Opt. 58 G96
[11] Yuan Y, Sun M Y, Bi Y, Gao W N, Zhang S and Zhang W P 2021 Chin. Phys. B 30 014209
[12] Gao H Y, Yao Q X, Liu P, et al. 2016 Chin. Phys. B 25 094203
[13] Gao H Y, Liu P, Zeng C, Yao Q X, Zheng Z, Liu J, Zheng H, Yu Y J, Zeng Z X and Sun T 2016 Chin. Phys. B 25 094205
[14] Das B, Joseph J and Singh K 2009 Opt. Commun. 282 2147
[15] Judeinstein P, Oliveira P W, Krug H and Schmidt H 1997 Adv. Mater. Opt. Electron. 7 123
[16] Lucente M E 1993 J. Electron. Imaging 2 28
[17] Kim S C and Kim E S 2008 Appl. Opt. 47 D55
[18] Pan Y, Xu X, Solanki S, et al. 2009 Opt. Express 17 18543
[19] Jia J, Wang Y, Liu J, et al. 2013 Appl. Opt. 52 1404
[20] Gao C, Liu J, Li X, et al. 2015 Opt. Express 23 33194
[21] Pi D, Liu J, Kang R, Zhang Z and Han Y 2019 Opt. Express 27 28410
[22] Shimobaba T, Masuda N and Ito T 2009 Opt. Lett. 34 3133
[23] Hasegawa N, Shimobaba T, Kakue T and Ito T 2017 Appl. Opt. 56 A97
[24] Arai D, Shimobaba T, Murano K, Endo Y, Hirayama R, Hiyama D, Kakue T and Ito T 2015 Opt. Express 23 1740
[25] Blinder D, Chlipala M, Kozacki T and Schelkens P 2021 Opt. Lett. 46 2188
[26] Sun M, Yuan Y, Bi Y, Zhu J, Zhang S and Zhang W 2020 Laser and Optoelectron. Prog. 57 240901 (in Chinese)
[27] Wang Y, Chen Z, Sang X, Li H and Zhao L 2018 Opt. Commun. 410 768
[28] Shi L, Li B, Kim C, Kellnhofer P and Matusik W 2021 Nature 591 234
[29] Ishii Y, Shimobaba T, Blinder D, Birnbaum T, Schelkens P, Kakue T and Ito T 2022 Appl. Phys. B 128 22
[30] Zhang Y, Zhang M, Liu K, He Z and Cao L 2022 Appl. Sci. 12 8568
[31] Horisaki R, Nishizaki Y, Kitaguchi K, Saito M and Tanida J 2021 Appl. Opt. 60 A323
[32] Wang Z, Lv G, Feng Q, Wang A and Ming H 2019 Appl. Opt. 58 A41
[33] Liu S, Wei H, Li N, Liu Z and Zhang J 2019 Opt. Commun. 443 76
[34] Shimobaba T, Blinder D, Birnbaum T, Hoshi I, Shiomi H, Schelkens P and Ito T 2022 Front. Photon. 3 854391
[1] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[2] Bessel—Gaussian beam-based orbital angular momentum holography
Jiaying Ji(季佳滢), Zhigang Zheng(郑志刚), Jialong Zhu(朱家龙), Le Wang(王乐), Xinguang Wang(王新光), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(1): 014204.
[3] Extension of sound field reconstruction based on element radiation superposition method in a sparsity framework
Yuan Gao(高塬), Bo-Quan Yang(杨博全), Sheng-Guo Shi(时胜国), and Hao-Yang Zhang(张昊阳). Chin. Phys. B, 2023, 32(4): 044302.
[4] Multi-channel generation of vortex beams with controllable polarization states and orbital angular momentum
Ziyao Lyu(吕子瑶), Pan Wang(王潘), and Changshun Wang(王长顺). Chin. Phys. B, 2023, 32(12): 124209.
[5] Reconstruction resolution enhancement of EPISM based holographic stereogram with hogel spatial multiplexing
Yunpeng Liu(刘云鹏), Teng Zhang(张腾), Jian Su(苏健), Tao Jing(荆涛), Min Lin(蔺敏), Pei Li(李沛), and Xingpeng Yan(闫兴鹏). Chin. Phys. B, 2022, 31(4): 044201.
[6] Nearfield acoustic holography in a moving medium based on particle velocity input using nonsingular propagator
Bi-Chun Dong(董必春), Run-Mei Zhang(张润梅), Bin Yuan(袁彬), and Chuan-Yang Yu(俞传阳). Chin. Phys. B, 2022, 31(2): 024303.
[7] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[8] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[9] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[10] Incoherent digital holographic spectral imaging with high accuracy of image pixel registration
Feng-Ying Ma(马凤英), Xi Wang(王茜), Yuan-Zhuang Bu(卜远壮), Yong-Zhi Tian(田勇志), Yanli Du(杜艳丽) , Qiao-Xia Gong(弓巧侠), Ceyun Zhuang(庄策云), Jinhai Li(李金海), and Lei Li(李磊). Chin. Phys. B, 2021, 30(4): 044202.
[11] Taking snapshots of a moving electron wave packet in molecules using photoelectron holography in strong-field tunneling ionization
Mingrui He(何明睿), Yang Fan(樊洋), Yueming Zhou(周月明), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(12): 123202.
[12] Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform
Meng-Ting Wu(武梦婷), Yu Zhang(张雨), Ming-Yu Tang(汤明玉), Zhi-Yong Duan(段智勇), Feng-Ying Ma(马凤英), Yan-Li Du(杜艳丽), Er-Jun Liang(梁二军), and Qiao-Xia Gong(弓巧侠). Chin. Phys. B, 2020, 29(12): 124201.
[13] Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS
Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎). Chin. Phys. B, 2019, 28(8): 084212.
[14] Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope
You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅). Chin. Phys. B, 2019, 28(8): 084205.
[15] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
No Suggested Reading articles found!