Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097202    DOI: 10.1088/1674-1056/ad553d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

In-phase and out-of-phase spin pumping effects in Py/Ru/Py synthetic antiferromagnetic structures

Zhaocong Huang(黄兆聪)1,†, Xuejian Tang(唐学健)1,†, Qian Chen(陈倩)1,‡, Wei Jiang(蒋伟)1, Qingjie Guo(郭庆杰)1, Milad Jalali1, Jun Du(杜军)2, and Ya Zhai(翟亚)1,§
1 Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China;
2 National Laboratory of Solid Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generation and transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagnetic layers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Within this context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across different modes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreases with increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds that of the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterations in static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagnetic structures in magnonic devices.
Keywords:  spin pumping      spin transmission      synthetic antiferromagnetic structures      spin dynamics  
Received:  02 June 2024      Revised:  05 June 2024      Accepted manuscript online:  07 June 2024
PACS:  72.25.Pn (Current-driven spin pumping)  
  72.25.Mk (Spin transport through interfaces)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  67.30.hj (Spin dynamics)  
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2023YFA1406603), the National Natural Science Foundation of China (Grant Nos. 52071079, 12274071, 12374112, and T2394473), and Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No. 2023ZB491).
Corresponding Authors:  Qian Chen, Ya Zhai     E-mail:  qchen2022@seu.edu.cn;yazhai@seu.edu.cn

Cite this article: 

Zhaocong Huang(黄兆聪), Xuejian Tang(唐学健), Qian Chen(陈倩), Wei Jiang(蒋伟), Qingjie Guo(郭庆杰), Milad Jalali, Jun Du(杜军), and Ya Zhai(翟亚) In-phase and out-of-phase spin pumping effects in Py/Ru/Py synthetic antiferromagnetic structures 2024 Chin. Phys. B 33 097202

[1] Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V and Fert A 2020 Nat. Mater. 19 34
[2] Wang Y, Zhang Y, Li C, Wei J, He B, Xu H, Xia J, Luo X, Li J, Dong J, He W, Yan Z, Yang W, Ma F, Chai G, Yan P, Wan C, Han X and Yu G 2024 Nat. Commun. 15 2077
[3] Yang S H, Ryu K S and Parkin S 2015 Nat. Nanotech. 10 221
[4] Costache M V, Sladkov M, Watts S M, van der Wal C H and van Wees B J 2006 Phys. Rev. Lett. 97 216603
[5] Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S D and Hoffmann A 2010 Phys. Rev. Lett. 104 046601
[6] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. B 66 224403
[7] Chen Q, Ruan X, Yuan H, Zhou X, Kou Z, Huang Z, Xu Y and Zhai Y 2020 Appl. Phys. Lett. 116 132403
[8] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262
[9] Fan Y, Finley J, Han J, Holtz M E, Quarterman P, Zhang P, Safi T S, Hou J T, Grutter A J and Liu L 2021 Adv. Mater. 33 2008555
[10] Chen J, Liu C, Liu T, Xiao Y, Xia K, Bauer G E W, Wu M and Yu H 2018 Phys. Rev. Lett. 120 217202
[11] Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R and Bauer G E W 2003 Phys. Rev. Lett. 90 187601
[12] Guo C Y, Wan C H, Wang X, Fang C, Tang P, Kong W J, Zhao M K, Jiang L N, Tao B S, Yu G Q and Han X F 2018 Phys. Rev. B 98 134426
[13] Wu H, Huang L, Fang C, Yang B S, Wan C H, Yu G Q, Feng J F, Wei H X and Han X F 2018 Phys. Rev. Lett. 120 097205
[14] Guo C Y, Wan C H, He W Q, Zhao M K, Yan Z R, Xing Y W, Wang X, Tang P, Liu Y Z, Zhang S, Liu Y W and Han X F 2020 Nat. Electron. 3 304
[15] Li Y, Zhang Z, Liu C, Zheng D, Fang B, Zhang C, Chen A, Ma Y, Wang C, Liu H, Shen K, Manchon A, Xiao J Q, Qiu Z, Hu C M and Zhang X 2024 Nat. Commun. 15 2234
[16] Omelchenko P, Girt E and Heinrich B 2019 Phys. Rev. B 100 144418
[17] Xie Z K, Cai J W, Cheng Z H and He W 2024 Appl. Phys. Lett. 124 042406
[18] Zivieri R, Giovannini L and Nizzoli F 2000 Phys. Rev. B 62 14950
[19] Sud A, Zollitsch C W, Kamimaki A, Dion T, Khan S, Iihama S, Mizukami S and Kurebayashi H 2020 Phys. Rev. B 102 100403
[20] Tanaka K, Moriyama T, Nagata M, Seki T, Takanashi K, Takahashi S and Ono T 2014 Appl. Phys. Express 7 063010
[21] Yang H, Li Y and Bailey W E 2016 Appl. Phys. Lett. 108 242404
[22] Karube S, Hoshika T, Zhang C, Kohda M and Nitta J 2022 Appl. Phys. Express 15 103001
[23] Kamimaki A, Iihama S, Taniguchi T and Mizukami S 2019 Appl. Phys. Lett. 115 132402
[24] Zhang W, Vlaminck V, Pearson J E, Divan R, Bader S D and Hoffmann A 2013 Appl. Phys. Lett. 103 242414
[25] Chen Q, Cao L, Li J, Fu Q, Zhu Y, Guo Q, Liu R, Li T, Zhang W, Du J, Zheng J, Huang Z, Wong P K J, Fang B, Zeng Z and Zhai Y 2022 Appl. Phys. Lett. 120 242405
[26] Deorani P and Yang H 2013 Appl. Phys. Lett. 103 232408
[27] Zhu L, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 123 057203
[28] Yin Y, Pan F, Ahlberg M, Ranjbar M, Dürrenfeld P, Houshang A, Haidar M, Bergqvist L, Zhai Y, Dumas R K, Delin A and Åkerman J 2015 Phys. Rev. B 92 024427
[29] Shaw J M, Nembach H T and Silva T J 2012 Phys. Rev. B 85 054412
[30] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601
[31] Wang W, Li P, Cao C, Liu F, Tang R, Chai G and Jiang C 2018 Appl. Phys. Lett. 113 042401
[32] Sang T, Zhang S, Zhao G, Geng C, Jin Z, Zong W, Cao D, Xu J, Wang X, Miao G X and Li S 2021 J. Alloys Compd. 875 159881
[33] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
[34] Kasuya T 1956 Prog. Theor. Phys. 16 45
[35] Yosida K 1957 Phys. Rev. 106 893
[1] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[2] Ultrafast magneto-optical dynamics in nickel (111) single crystal studied by the integration of ultrafast reflectivity and polarimetry probes
Hao Kuang(匡皓), Junxiao Yu(余军潇), Jie Chen(陈洁), H. E. Elsayed-Ali, Runze Li(李润泽), and Peter M. Rentzepis. Chin. Phys. B, 2024, 33(3): 037802.
[3] Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures
Mingming Li(李明明), Lei Zhang(张磊), Lichuan Jin(金立川), and Haizhong Guo(郭海中). Chin. Phys. B, 2024, 33(2): 027201.
[4] Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals
Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾). Chin. Phys. B, 2024, 33(1): 016301.
[5] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[6] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[7] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[8] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[9] Inverse spin Hall effect in ITO/YIG exited by spin pumping and spin Seebeck experiments
Kejian Zhu(朱科建), Weijian Lin(林伟坚), Yangtao Su(苏仰涛), Haibin Shi(石海滨), Yang Meng(孟洋), Hongwu Zhao(赵宏武). Chin. Phys. B, 2019, 28(1): 017201.
[10] The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance
Yun Kang(康韵), Hai Zhong(钟海), Runrun Hao(郝润润), Shujun Hu(胡树军), Shishou Kang(康仕寿), Guolei Liu(刘国磊), Yin Zhang(张引), Xiangrong Wang(王向荣), Shishen Yan(颜世申), Yong Wu(吴勇), Shuyun Yu(于淑云), Guangbing Han(韩广兵), Yong Jiang(姜勇), Liangmo Mei(梅良模). Chin. Phys. B, 2017, 26(4): 047202.
[11] Superexchange-mediated magnetization dynamics with ultracold alkaline-earth atoms in an optical lattice
Shaobing Zhu(朱少兵), Jun Qian(钱军), Yuzhu Wang(王育竹). Chin. Phys. B, 2017, 26(4): 046702.
[12] Manipulating magnetic anisotropy and ultrafast spin dynamics of magnetic nanostructures
Cheng Zhao-Hua (成昭华), He Wei (何为), Zhang Xiang-Qun (张向群), Sun Da-Li (孙达力), Du Hai-Feng (杜海峰), Wu Qiong (吴琼), Ye Jun (叶军), Fang Ya-Peng (房亚鹏), Liu Hao-Liang (刘郝亮). Chin. Phys. B, 2015, 24(7): 077505.
[13] Coherent spin dynamics in spin-imbalanced ferromagnetic spinor condensates
Qiu Hai-Bo (邱海波), Wu Li-Wei (武丽伟). Chin. Phys. B, 2015, 24(1): 010304.
[14] Spin pumping at the Co2FeAl0.5Si0.5/Pt interface
Wu Yong (吴勇), Zhao Yue-Lei (赵月雷), Xiong Qiang (熊强), Xu Xiao-Guang (徐晓光), Sun Young (孙阳), Zhang Shi-Qing (张十庆), Jiang Yong (姜勇). Chin. Phys. B, 2014, 23(1): 018503.
No Suggested Reading articles found!