CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
In-phase and out-of-phase spin pumping effects in Py/Ru/Py synthetic antiferromagnetic structures |
Zhaocong Huang(黄兆聪)1,†, Xuejian Tang(唐学健)1,†, Qian Chen(陈倩)1,‡, Wei Jiang(蒋伟)1, Qingjie Guo(郭庆杰)1, Milad Jalali1, Jun Du(杜军)2, and Ya Zhai(翟亚)1,§ |
1 Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China; 2 National Laboratory of Solid Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generation and transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagnetic layers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Within this context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across different modes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreases with increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds that of the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterations in static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagnetic structures in magnonic devices.
|
Received: 02 June 2024
Revised: 05 June 2024
Accepted manuscript online: 07 June 2024
|
PACS:
|
72.25.Pn
|
(Current-driven spin pumping)
|
|
72.25.Mk
|
(Spin transport through interfaces)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
67.30.hj
|
(Spin dynamics)
|
|
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2023YFA1406603), the National Natural Science Foundation of China (Grant Nos. 52071079, 12274071, 12374112, and T2394473), and Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No. 2023ZB491). |
Corresponding Authors:
Qian Chen, Ya Zhai
E-mail: qchen2022@seu.edu.cn;yazhai@seu.edu.cn
|
Cite this article:
Zhaocong Huang(黄兆聪), Xuejian Tang(唐学健), Qian Chen(陈倩), Wei Jiang(蒋伟), Qingjie Guo(郭庆杰), Milad Jalali, Jun Du(杜军), and Ya Zhai(翟亚) In-phase and out-of-phase spin pumping effects in Py/Ru/Py synthetic antiferromagnetic structures 2024 Chin. Phys. B 33 097202
|
[1] Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V and Fert A 2020 Nat. Mater. 19 34 [2] Wang Y, Zhang Y, Li C, Wei J, He B, Xu H, Xia J, Luo X, Li J, Dong J, He W, Yan Z, Yang W, Ma F, Chai G, Yan P, Wan C, Han X and Yu G 2024 Nat. Commun. 15 2077 [3] Yang S H, Ryu K S and Parkin S 2015 Nat. Nanotech. 10 221 [4] Costache M V, Sladkov M, Watts S M, van der Wal C H and van Wees B J 2006 Phys. Rev. Lett. 97 216603 [5] Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S D and Hoffmann A 2010 Phys. Rev. Lett. 104 046601 [6] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. B 66 224403 [7] Chen Q, Ruan X, Yuan H, Zhou X, Kou Z, Huang Z, Xu Y and Zhai Y 2020 Appl. Phys. Lett. 116 132403 [8] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262 [9] Fan Y, Finley J, Han J, Holtz M E, Quarterman P, Zhang P, Safi T S, Hou J T, Grutter A J and Liu L 2021 Adv. Mater. 33 2008555 [10] Chen J, Liu C, Liu T, Xiao Y, Xia K, Bauer G E W, Wu M and Yu H 2018 Phys. Rev. Lett. 120 217202 [11] Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R and Bauer G E W 2003 Phys. Rev. Lett. 90 187601 [12] Guo C Y, Wan C H, Wang X, Fang C, Tang P, Kong W J, Zhao M K, Jiang L N, Tao B S, Yu G Q and Han X F 2018 Phys. Rev. B 98 134426 [13] Wu H, Huang L, Fang C, Yang B S, Wan C H, Yu G Q, Feng J F, Wei H X and Han X F 2018 Phys. Rev. Lett. 120 097205 [14] Guo C Y, Wan C H, He W Q, Zhao M K, Yan Z R, Xing Y W, Wang X, Tang P, Liu Y Z, Zhang S, Liu Y W and Han X F 2020 Nat. Electron. 3 304 [15] Li Y, Zhang Z, Liu C, Zheng D, Fang B, Zhang C, Chen A, Ma Y, Wang C, Liu H, Shen K, Manchon A, Xiao J Q, Qiu Z, Hu C M and Zhang X 2024 Nat. Commun. 15 2234 [16] Omelchenko P, Girt E and Heinrich B 2019 Phys. Rev. B 100 144418 [17] Xie Z K, Cai J W, Cheng Z H and He W 2024 Appl. Phys. Lett. 124 042406 [18] Zivieri R, Giovannini L and Nizzoli F 2000 Phys. Rev. B 62 14950 [19] Sud A, Zollitsch C W, Kamimaki A, Dion T, Khan S, Iihama S, Mizukami S and Kurebayashi H 2020 Phys. Rev. B 102 100403 [20] Tanaka K, Moriyama T, Nagata M, Seki T, Takanashi K, Takahashi S and Ono T 2014 Appl. Phys. Express 7 063010 [21] Yang H, Li Y and Bailey W E 2016 Appl. Phys. Lett. 108 242404 [22] Karube S, Hoshika T, Zhang C, Kohda M and Nitta J 2022 Appl. Phys. Express 15 103001 [23] Kamimaki A, Iihama S, Taniguchi T and Mizukami S 2019 Appl. Phys. Lett. 115 132402 [24] Zhang W, Vlaminck V, Pearson J E, Divan R, Bader S D and Hoffmann A 2013 Appl. Phys. Lett. 103 242414 [25] Chen Q, Cao L, Li J, Fu Q, Zhu Y, Guo Q, Liu R, Li T, Zhang W, Du J, Zheng J, Huang Z, Wong P K J, Fang B, Zeng Z and Zhai Y 2022 Appl. Phys. Lett. 120 242405 [26] Deorani P and Yang H 2013 Appl. Phys. Lett. 103 232408 [27] Zhu L, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 123 057203 [28] Yin Y, Pan F, Ahlberg M, Ranjbar M, Dürrenfeld P, Houshang A, Haidar M, Bergqvist L, Zhai Y, Dumas R K, Delin A and Åkerman J 2015 Phys. Rev. B 92 024427 [29] Shaw J M, Nembach H T and Silva T J 2012 Phys. Rev. B 85 054412 [30] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601 [31] Wang W, Li P, Cao C, Liu F, Tang R, Chai G and Jiang C 2018 Appl. Phys. Lett. 113 042401 [32] Sang T, Zhang S, Zhao G, Geng C, Jin Z, Zong W, Cao D, Xu J, Wang X, Miao G X and Li S 2021 J. Alloys Compd. 875 159881 [33] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99 [34] Kasuya T 1956 Prog. Theor. Phys. 16 45 [35] Yosida K 1957 Phys. Rev. 106 893 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|