CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals |
Zhao-Nian Jin(金兆年)1, Xuan-Lin He(何宣霖)2, Chao Yu(于超)2, Henan Fang(方贺男)2, Lin Chen(陈琳)2, and Zhi-Kuo Tao(陶志阔)2,† |
1 Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile, while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
|
Received: 09 June 2023
Revised: 06 August 2023
Accepted manuscript online: 15 August 2023
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
|
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
85.70.Ay
|
(Magnetic device characterization, design, and modeling)
|
|
12.39.Dc
|
(Skyrmions)
|
|
Corresponding Authors:
Zhi-Kuo Tao
E-mail: zktao@njupt.edu.cn
|
Cite this article:
Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超), Henan Fang(方贺男), Lin Chen(陈琳), and Zhi-Kuo Tao(陶志阔) Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals 2024 Chin. Phys. B 33 017501
|
[1] Philipp P, Vitaliy I V, Alexander A S and Burkard H 2021 Nat. Rev. Mater. 6 1114 [2] Krawczyk1 M and Grundler D 2014 J. Phys.:Condens. Matter 26 123202 [3] Roldán-Molina A, Nunez A S and Fernández-Rossier J 2016 New J. Phys. 18 045015 [4] Li Z Y, Ma M Y, Chen Z D, Xie K L and Ma F S 2022 J. Appl. Phys. 132 210702 [5] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915 [6] Luo S J and You L 2021 APL Mater. 9 050901 [7] Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Im M Y, Fang L and Jiang W J 2022 Chin. Phys. Lett. 39 017501 [8] Puebla J, Kim J, Kondou K and Otani Y 2020 Commun. Mater. 1 24 [9] Luo S J, Song M, Li X, Zhang Y, Hong J M, Yang X F, Zou X C, Xu N and You L 2018 Nano Lett. 18 1180 [10] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742 [11] Peng L C, Karube K, Taguchi Y, Nagaosa N, Tokura Y and Yu X Z 2021 Nat. Commun. 12 6797 [12] Mochizuki M 2012 Phys. Rev. Lett. 108 017601 [13] Onose Y, Okamura Y, Seki S, Ishiwata S and Tokura Y 2012 Phys. Rev. Lett. 109 037603 [14] Jin C D, Song C K, Wang J S, Xia H Y, Wang J B and Liu Q F 2017 J. Appl. Phys. 122 223901 [15] Paikaray B, Joseph A, Murapaka C and Haldar A 2021 J. Magn. Magn. Mater. 529 167900 [16] Xing L D, Hua D Y and Wang W W 2018 J. Appl. Phys. 124 123904 [17] Kim J, Yang J, Cho Y J, Kim B and Kim S K 2018 J. Appl. Phys. 123 053903 [18] Lonsky M and Hoffmann A 2020 Phys. Rev. B 102 104403 [19] Qiu L, Shen L C, Zhang X C, Zhou Y, Zhao G P, Xia W X, Luo H B and Liu J P 2021 Appl. Phys. Lett. 118 082403 [20] Vigo-Cotrina H and Guimaraes A P 2020 J. Magn. Magn. Mater. 507 166848 [21] Mehmood N, Wang J B, Zhang C L, Zeng Z Z, Wang J N and Liu Q F 2022 J. Magn. Magn. Mater. 545 168775 [22] Shen X C, Zhao R Z, Ji L Z, Hu C L, Ren W L, Chen W C, Li Y X, Zhang J, Zhang X F and Dong X L 2022 J. Magn. Magn. Mater. 541 168521 [23] Yang W G and Schmidt H 2021 Appl. Phys. Rev. 8 021304 [24] Chen R Y, Chen C, Han L, Liu P S, Su R X, Zhu W X, Zhou Y J, Pan F and Song C 2023 Nat. Commun. 14 4427 [25] Wang X G, Nie Y Z, Xia Q L and Guo G H 2020 J. Appl. Phys. 128 063901 [26] Zhang C L, Jin C D, Wang J S, Xia H Y, Wang J N, Wang J B and Liu Q F 2019 J. Magn. Magn. Mater. 490 165542 [27] Ma F S, Zhou Y, Braun H B and Lew W S 2015 Nano Lett. 15 4029 [28] Beg M, Lang M and Fangohr H 2022 IEEE Trans. Magn. 58 1 [29] Hu J M, Yang T N and Chen L Q 2019 Acta Mater. 183 145 [30] Biswas A K, Ahmad H, Atulasimha J and Bandyopadhyay S 2017 Nano Lett. 17 3478 [31] Zhu M M, Li Y T, Hu H M, Cui S T, Qiu Y, Yu G L and Zhou H M 2022 Appl. Phys. Lett. 121 032402 [32] Kumar D, Dmytriiev O, Ponraj S and Barman1 A 2012 J. Phys. D 45 015001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|