Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087802    DOI: 10.1088/1674-1056/acd68a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators

Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语)
Department of Physics, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
Abstract  Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes. Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulator MnBi2Te4. We find that by breaking the combined mirror symmetries with either perpendicular electric field or external magnetic moment, Kerr and Faraday effects occur. Under perpendicular electric field, antiferromagnetic topological insulators (AFMTI) show sharp peaks at the interband transition threshold, whereas trivial insulators show small adjacent positive and negative peaks. Gate voltage and Fermi energy can be tuned to reveal the differences between AFMTI and trivial insulators. We find that AFMTI with large antiferromagnetic order can be proposed as a pure magneto-optical rotator due to sizable Kerr (Faraday) angles and vanishing ellipticity. Under external magnetic moment, AFMTI and trivial insulators are significantly different in the magnitude of Kerr and Faraday angles and ellipticity. For the qualitative behaviors, AFMTI shows distinct features of Kerr and Faraday angles when the spin configurations of the system change. These phenomena provide new possibilities to optically detect and manipulate the layered topological antiferromagnets.
Keywords:  magneto-optical Kerr and Faraday effects      antiferromagnetic topological insulators      bilayer systems  
Received:  27 March 2023      Revised:  10 May 2023      Accepted manuscript online:  18 May 2023
PACS:  78.20.Ls (Magneto-optical effects)  
  75.50.Ee (Antiferromagnetics)  
  73.21.Ac (Multilayers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11904062), the Starting Research Fund from Guangzhou University (Grant No.RQ2020076), and Guangzhou Basic Research Program, jointed funded by Guangzhou University (Grant No.202201020186).
Corresponding Authors:  Wen-Yu Shan     E-mail:  wyshan@gzhu.edu.cn

Cite this article: 

Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语) Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators 2023 Chin. Phys. B 32 087802

[1] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231
[2] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[3] Li R, Wang J, Qi X L and Zhang S C 2010 Nat. Phys. 6 284
[4] Nenno D M, Garcia C A C, Gooth J, Felser C and Narang P 2020 Nat. Rev. Phys. 2 682
[5] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater. 19 522
[6] Essin A M, Moore J E and Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
[7] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401
[8] Armitage N P and Wu L 2019 SciPost Phys. 6 046
[9] Chen H, Niu Q and MacDonald A H 2014 Phys. Rev. Lett. 112 017205
[10] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[11] Nayak A A, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C and Parkin S S P 2016 Sci. Adv. 2 e1501870
[12] Feng W, Hanke J P, Zhou X, Guo G Y, Blugel S, Mokrousov Y and Yao Y 2020 Nat. Commun. 11 118
[13] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416
[14] Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202
[15] Chen Y J, Xu L X, Li J H, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X and Chen Y L 2019 Phys. Rev. X 9 041040
[16] Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R, Zeng M, Wang Y, Hao Z, Sun H Y, Zhang K, Mei J, Ni N, Wu L, Shimada K, Chen C, Liu Q and Liu C 2019 Phys. Rev. X 9 041038
[17] Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J and Kaminski A 2020 Phys. Rev. B 101 161109
[18] Zhang J, Wang D, Shi M, Zhu T, Zhang H and Wang J 2020 Chin. Phys. Lett. 37 077304
[19] Gao A, Liu Y F, Hu C, Qiu J X, Tzschaschel C, Ghosh B, Ho S C, Bérubé D, Chen R, Sun H, Zhang Z, Zhang X Y, Wang Y X, Wang N, Huang Z, Felser C, Agarwal A, Ding T, Tien H J, Akey A, Gardener J, Singh B, Watanabe K, Taniguchi T, Burch K S, Bell D C, Zhou B B, Gao W, Lu H Z, Bansil A, Lin H, Chang T R, Fu L, Ma Q, Ni N and Xu S Y 2021 Nature 595 521
[20] Chen R, Sun H P, Gu M, Hua C B, Liu Q, Lu H Z and Xie X C 2022 Nat. Sci. Rev. nwac140
[21] Chen R, Li S, Sun H P, Liu Q, Zhao Y, Lu H Z and Xie X C 2021 Phys. Rev. B 103 L241409
[22] Ding Y R, Xu D H, Chen C Z and Xie X C 2020 Phys. Rev. B 101 041404
[23] Zhang R X, Wu F and Das Sarma S 2020 Phys. Rev. Lett. 124 136407
[24] Li H, Jiang H, Chen C Z and Xie X C 2021 Phys. Rev. Lett. 126 156601
[25] Gu M, Li J, Sun H, Zhao Y, Liu C, Liu J, Lu H and Liu Q 2021 Nat. Commun. 12 3524
[26] Dai W B, Li H, Xu D H, Chen C Z and Xie X C 2022 Phys. Rev. B 106 245425
[27] Ahn J, Xu S Y and Vishwanath A 2022 Nat. Commun. 13 7615
[28] Lei C and MacDonald A H 2023 arXiv: 2303.14635
[29] Qiu J X, Tzschaschel C, Ahn J, Gao A, Li H, Zhang X Y, Ghosh B, Hu C, Wang Y X, Liu Y F, Bérubé D, Dinh T, Gong Z, Lien S W, Ho S C, Singh B, Watanabe K, Taniguchi T, Bell D C, Lu H Z, Bansil A, Lin H, Chang T R, Zhou B B, Ma Q, Vishwanath A, Ni N and Xu S Y 2023 Nat. Mater. 22 583
[30] Nandkishore R and Levitov L 2011 Phys. Rev. Lett. 107 097402
[31] Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, van der Marel D and Kuzmenko A B 2011 Nat. Phys. 7 48
[32] Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T and Aoki H 2013 Nat. Commun. 4 1841
[33] Sivadas N, Okamoto S and Xiao D 2016 Phys. Rev. Lett. 117 267203
[34] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[35] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[36] Freiser 1968 IEEE Trans. Magn. 4 152
[37] Tse W K and MacDonald A H 2010 Phys. Rev. Lett. 105 057401
[38] Gorbar E V, Gusynin V P, Kuzmenko A B and Sharapov S G 2012 Phys. Rev. B 86 075414
[39] Tse W K and MacDonald A H 2011 Phys. Rev. B 84 205327
[40] Catarina G, Peres N M and Fernandez-Rossier J 2020 2D Mater. 7 025011
[41] Kahn F J, Pershan P S and Remeika J P 1969 Phys. Rev. 186 891
[42] Mahan G D 2000 Many-Particle Physics 3rd edn. (New York: Springer) p. 507
[43] Giuliani G and Vignale G 2005 Quantum Theory of the Electron Liquid 1st edn. (Cambridge: Cambridge University Press) p. 128
[44] Zhou J, Zhang S and Li J 2020 NPG Asia Mater. 12 2
[45] Cao J, Jiang W, Li X P, Tu D, Zhou J, Zhou J and Yao Y 2023 Phys. Rev. Lett. 130 166702
[1] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[2] Demonstration of Faraday anomalous dispersion optical filter with reflection configuration
Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛). Chin. Phys. B, 2022, 31(1): 017804.
[3] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[4] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[5] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[6] Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field
Xiaoguang Wu(吴晓光). Chin. Phys. B, 2019, 28(10): 107302.
[7] The unique magnetic damping enhancement in epitaxial Co2Fe1-xMnxAl films
Shu-Fa Li(李树发), Chu-Yuan Cheng(程樗元), Kang-Kang Meng(孟康康), Chun-Lei Chen(陈春雷). Chin. Phys. B, 2019, 28(9): 097502.
[8] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[9] Resonant magneto-optical Kerr effect induced by hybrid plasma modes in ferromagnetic nanovoids
Xia Zhang(张 霞), Lei Shi(石 磊), Jing Li(李晶), Yun-Jie Xia(夏云杰), Shi-Ming Zhou(周仕明). Chin. Phys. B, 2017, 26(11): 117801.
[10] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[11] Novel inspection of welded joint microstructure using magneto-optical imaging technology
Xiang-dong Gao(高向东), Zheng-wen Li(李正文), De-yong You(游德勇), Seiji Katayama. Chin. Phys. B, 2017, 26(5): 054214.
[12] Exchange effect and magneto-plasmon mode dispersion in an anisotropic two-dimensional electronic system
Xiaoguang Wu(吴晓光). Chin. Phys. B, 2016, 25(11): 117801.
[13] Fano resonance and magneto-optical Kerr rotaion in periodic Co/Ni complex plasmonic nanostructure
Le-Yi Chen(陈乐易), Zhi-Xiong Tang(唐志雄), Jin-Long Gao(高锦龙), Dao-Yong Li(李道勇), Cheng-Xin Lei(类成新), Zhen-Zhi Cheng(程振之), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2016, 25(11): 113301.
[14] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[15] Landau level transitions in InAs/AlSb/GaSb quantum wells
Wu Xiao-Guang (吴晓光), Pang Mi (庞蜜). Chin. Phys. B, 2015, 24(9): 097301.
No Suggested Reading articles found!