CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators |
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语)† |
Department of Physics, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China |
|
|
Abstract Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes. Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulator MnBi2Te4. We find that by breaking the combined mirror symmetries with either perpendicular electric field or external magnetic moment, Kerr and Faraday effects occur. Under perpendicular electric field, antiferromagnetic topological insulators (AFMTI) show sharp peaks at the interband transition threshold, whereas trivial insulators show small adjacent positive and negative peaks. Gate voltage and Fermi energy can be tuned to reveal the differences between AFMTI and trivial insulators. We find that AFMTI with large antiferromagnetic order can be proposed as a pure magneto-optical rotator due to sizable Kerr (Faraday) angles and vanishing ellipticity. Under external magnetic moment, AFMTI and trivial insulators are significantly different in the magnitude of Kerr and Faraday angles and ellipticity. For the qualitative behaviors, AFMTI shows distinct features of Kerr and Faraday angles when the spin configurations of the system change. These phenomena provide new possibilities to optically detect and manipulate the layered topological antiferromagnets.
|
Received: 27 March 2023
Revised: 10 May 2023
Accepted manuscript online: 18 May 2023
|
PACS:
|
78.20.Ls
|
(Magneto-optical effects)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
73.21.Ac
|
(Multilayers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11904062), the Starting Research Fund from Guangzhou University (Grant No.RQ2020076), and Guangzhou Basic Research Program, jointed funded by Guangzhou University (Grant No.202201020186). |
Corresponding Authors:
Wen-Yu Shan
E-mail: wyshan@gzhu.edu.cn
|
Cite this article:
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语) Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators 2023 Chin. Phys. B 32 087802
|
[1] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 [2] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 [3] Li R, Wang J, Qi X L and Zhang S C 2010 Nat. Phys. 6 284 [4] Nenno D M, Garcia C A C, Gooth J, Felser C and Narang P 2020 Nat. Rev. Phys. 2 682 [5] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater. 19 522 [6] Essin A M, Moore J E and Vanderbilt D 2009 Phys. Rev. Lett. 102 146805 [7] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401 [8] Armitage N P and Wu L 2019 SciPost Phys. 6 046 [9] Chen H, Niu Q and MacDonald A H 2014 Phys. Rev. Lett. 112 017205 [10] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [11] Nayak A A, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C and Parkin S S P 2016 Sci. Adv. 2 e1501870 [12] Feng W, Hanke J P, Zhou X, Guo G Y, Blugel S, Mokrousov Y and Yao Y 2020 Nat. Commun. 11 118 [13] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416 [14] Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202 [15] Chen Y J, Xu L X, Li J H, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X and Chen Y L 2019 Phys. Rev. X 9 041040 [16] Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R, Zeng M, Wang Y, Hao Z, Sun H Y, Zhang K, Mei J, Ni N, Wu L, Shimada K, Chen C, Liu Q and Liu C 2019 Phys. Rev. X 9 041038 [17] Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J and Kaminski A 2020 Phys. Rev. B 101 161109 [18] Zhang J, Wang D, Shi M, Zhu T, Zhang H and Wang J 2020 Chin. Phys. Lett. 37 077304 [19] Gao A, Liu Y F, Hu C, Qiu J X, Tzschaschel C, Ghosh B, Ho S C, Bérubé D, Chen R, Sun H, Zhang Z, Zhang X Y, Wang Y X, Wang N, Huang Z, Felser C, Agarwal A, Ding T, Tien H J, Akey A, Gardener J, Singh B, Watanabe K, Taniguchi T, Burch K S, Bell D C, Zhou B B, Gao W, Lu H Z, Bansil A, Lin H, Chang T R, Fu L, Ma Q, Ni N and Xu S Y 2021 Nature 595 521 [20] Chen R, Sun H P, Gu M, Hua C B, Liu Q, Lu H Z and Xie X C 2022 Nat. Sci. Rev. nwac140 [21] Chen R, Li S, Sun H P, Liu Q, Zhao Y, Lu H Z and Xie X C 2021 Phys. Rev. B 103 L241409 [22] Ding Y R, Xu D H, Chen C Z and Xie X C 2020 Phys. Rev. B 101 041404 [23] Zhang R X, Wu F and Das Sarma S 2020 Phys. Rev. Lett. 124 136407 [24] Li H, Jiang H, Chen C Z and Xie X C 2021 Phys. Rev. Lett. 126 156601 [25] Gu M, Li J, Sun H, Zhao Y, Liu C, Liu J, Lu H and Liu Q 2021 Nat. Commun. 12 3524 [26] Dai W B, Li H, Xu D H, Chen C Z and Xie X C 2022 Phys. Rev. B 106 245425 [27] Ahn J, Xu S Y and Vishwanath A 2022 Nat. Commun. 13 7615 [28] Lei C and MacDonald A H 2023 arXiv: 2303.14635 [29] Qiu J X, Tzschaschel C, Ahn J, Gao A, Li H, Zhang X Y, Ghosh B, Hu C, Wang Y X, Liu Y F, Bérubé D, Dinh T, Gong Z, Lien S W, Ho S C, Singh B, Watanabe K, Taniguchi T, Bell D C, Lu H Z, Bansil A, Lin H, Chang T R, Zhou B B, Ma Q, Vishwanath A, Ni N and Xu S Y 2023 Nat. Mater. 22 583 [30] Nandkishore R and Levitov L 2011 Phys. Rev. Lett. 107 097402 [31] Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, van der Marel D and Kuzmenko A B 2011 Nat. Phys. 7 48 [32] Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T and Aoki H 2013 Nat. Commun. 4 1841 [33] Sivadas N, Okamoto S and Xiao D 2016 Phys. Rev. Lett. 117 267203 [34] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [35] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [36] Freiser 1968 IEEE Trans. Magn. 4 152 [37] Tse W K and MacDonald A H 2010 Phys. Rev. Lett. 105 057401 [38] Gorbar E V, Gusynin V P, Kuzmenko A B and Sharapov S G 2012 Phys. Rev. B 86 075414 [39] Tse W K and MacDonald A H 2011 Phys. Rev. B 84 205327 [40] Catarina G, Peres N M and Fernandez-Rossier J 2020 2D Mater. 7 025011 [41] Kahn F J, Pershan P S and Remeika J P 1969 Phys. Rev. 186 891 [42] Mahan G D 2000 Many-Particle Physics 3rd edn. (New York: Springer) p. 507 [43] Giuliani G and Vignale G 2005 Quantum Theory of the Electron Liquid 1st edn. (Cambridge: Cambridge University Press) p. 128 [44] Zhou J, Zhang S and Li J 2020 NPG Asia Mater. 12 2 [45] Cao J, Jiang W, Li X P, Tu D, Zhou J, Zhou J and Yao Y 2023 Phys. Rev. Lett. 130 166702 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|