Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077303    DOI: 10.1088/1674-1056/ad4bbd
SPECIAL TOPIC—Valleytronics Prev   Next  

Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure

Xiao-Jing Dong(董晓晶)1,2 and Chang-Wen Zhang(张昌文)1,†
1 School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan 250022, China;
2 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
Abstract  Valley-polarized quantum anomalous Hall effect (VQAHE), combined nontrivial band topology with valleytronics, is of importance for both fundamental sciences and emerging applications. However, the experimental realization of this property is challenging. Here, by using first-principles calculations and modal analysis, we predict a mechanism of producing VQAHE in two-dimensional ferromagnetic van der Waals germanene/MnI$_{2}$ heterostructure. This heterostructure exhibits both valley anomalous Hall effect and VQAHE due to the joint effects of magnetic exchange effect and spin-orbital coupling with the aid of anomalous Hall conductance and chiral edge state. Moreover interestingly, through the electrical modulation of ferroelectric polarization state in In$_{2}$Se$_{3}$, the germanene/MnI$_{2}$/In$_{2}$Se$_{3}$ heterostructure can undergo reversible switching from a semiconductor to a metallic behavior. This work offers a guiding advancement for searching for VQAHE in ferromagnetic van der Waals heterostructures and exploiting energy-efficient devices based on the VQAHE.
Keywords:  valley-polarized      quantum anomalous Hall effect      ferromagnetic  
Received:  31 January 2024      Revised:  24 April 2024      Accepted manuscript online:  15 May 2024
PACS:  73.43.-f (Quantum Hall effects)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52173283), Taishan Scholar Program of Shandong Province (Grant No. ts20190939), and Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043).
Corresponding Authors:  Chang-Wen Zhang     E-mail:  ss_zhangchw@ujn.edu.cn

Cite this article: 

Xiao-Jing Dong(董晓晶) and Chang-Wen Zhang(张昌文) Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure 2024 Chin. Phys. B 33 077303

[1] Wang W G, Li M, Hageman S and Chien C L 2012 Nat. Mater. 11 64
[2] Tsymbal E Y 2012 Nat. Mater. 11 12
[3] Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A A, Shinjo T, Shiraishi M, Mizukami S, Ando Y and Suzuki Y 2009 Nat. Nanotechnol. 4 158
[4] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 Nanoscale 15 8395
[5] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 J. Mater. Chem. C 11 10359
[6] Zhang A, Yang K, Zhang Y, Pan A and Chen M 2021 Phys. Rev. B 104 L201403
[7] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148
[8] Liu Y, Gao Y, Zhang S, He J, Yu J and Liu Z 2019 Nano Res. 12 2695
[9] Olsen T and Souza I 2015 Phys. Rev. B 92 125146
[10] Tong W, Gong S, Wan X and Duan C 2016 Nat. Commun. 7 13612
[11] Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 046601
[12] Chen M X, Zhong Z and Weinert M 2016 Phys. Rev. B 94 075409
[13] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[14] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802
[15] Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419
[16] He R, Wang D, Luo N, Zeng J, Chen K Q and Tang L M 2023 Phys. Rev. Lett. 130 046401
[17] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112
[18] Zhou J, Sun Q and Jena P 2017 Phys. Rev. Lett. 119 046403
[19] Li Y, Liu Y, Wang C, Wang J, Xu Y and Duan W 2018 Phys. Rev. B 98 201407
[20] Macneill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401
[21] Zeng M, Xiao Y, Liu J, Yang K and Fu L 2018 Chem. Rev. 118 6236
[22] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696
[23] Qi J, Li X, Niu Q and Feng J 2015 Phys. Rev. B 92 121403
[24] Hu T, Zhao G, Gao H, Wu Y, Hong J, Stroppa A and Ren W 2020 Phys. Rev. B 101 125401
[25] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M C and Xu X 2018 Nano Lett. 18 3823
[26] Liu W R, Dong X J, Lv Y Z, Ji W X, Cao Q, Wang P J, Li F and Zhang C W 2022 Nanoscale 14 3632
[27] Lei C, Li X, Ma Y and Qian Z 2023 Phys. Rev. B 108 155431
[28] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong Di, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[29] Zhang A, Gong Z, Zhu Z, Pan A and Chen M 2020 Phys. Rev. B 102 155413
[30] Zhang Q, Yang S A, Mi W, Cheng Y and Schwingenschlögl U 2016 Adv. Mater. 28 959
[31] Kresse G, Furthmüller J and Hafner J 1994 Phys. Rev. B 50 13181
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Allouche A 2012 J. Comput. Chem. 32 174
[35] Wu X, Cai Y, Xie Q, Weng H, Fan H and Hu J 2012 Phys. Rev. B 86 134413
[36] Yekta Y, Hadipour H, Ş aşloglu E, Friedrich C, Jafari S A, Blügel S and Mertig I 2021 Phys. Rev. Mater. 5 034001
[37] Bo X, Fu L, Wan X, Li S and Pu Y 2024 Phys. Rev. B 109 014405
[38] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[39] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[40] Botana A S and Norman M R 2019 Phys. Rev. Mater. 3 044001
[41] Zhai B, Du J, Shen C, Wang T, Peng Y, Zhang Q and Xia C 2019 Phys. Rev. B 100 195307
[42] Anderson P W 1959 Phys. Rev. 115 2
[43] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[44] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[45] Dong X J, Ren M J and Zhang C W 2022 Phys. Chem. Chem. Phys. 24 21631
[46] Choi Y, Villanova J W and Park K 2020 Phys. Rev. B 101 035105
[47] Villanova J W and Park K 2018 Phys. Rev. B 98 075123
[48] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[49] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
[1] Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2024, 33(6): 067101.
[2] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[3] Interfacial DMI in Fe/Pt thin films grown on different buffer layers
Wen-Jun Zhang(张文君), Fei Wei(魏菲), Bing Liu(刘冰), Yang Zhou(周阳), Shi-Shou Kang(康仕寿), and Bing Sun(孙兵). Chin. Phys. B, 2024, 33(4): 048501.
[4] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[5] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[6] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[7] Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
Fei Wang(王斐), Yaling Zhang(张亚玲), Wenjia Yang(杨文佳), Huisheng Zhang(张会生), and Xiaohong Xu(许小红). Chin. Phys. B, 2024, 33(1): 017306.
[8] Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers
Huiping Li(李慧平), Shuaiwei Pan(潘帅唯), Zhe Wang(王喆), Bin Xiang(向斌), and Wenguang Zhu(朱文光). Chin. Phys. B, 2024, 33(1): 017504.
[9] Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals
Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾). Chin. Phys. B, 2024, 33(1): 016301.
[10] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[11] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[12] Multiferroic monolayers VOX (X = Cl, Br, I): Tunable ferromagnetism via charge doping and ferroelastic switching
Hong-Chao Yang(杨洪超), Peng-Cheng Liu(刘鹏程), Liu-Yu Mu(穆鎏羽), Ying-De Li(李英德), Kai Han(韩锴), and Xiao-Le Qiu(邱潇乐). Chin. Phys. B, 2023, 32(6): 067701.
[13] Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(5): 056502.
[14] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[15] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[1] HUANG MAO (黄矛), LIU KE-LING (刘克玲). NON-BOLTZMANN ENERGY LEVEL DISTRIBUTIONS OF ARGON ATOMS IN THE INDUCTIVELY COUPLED ARGON PLASMA[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 11 -18 .
[2] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), LI LIANG-QUAN (李良权), CHEN DIE-YAN (陈瓞延). STUDY OF HIGH-LYING EXCITED STATES OF RARE-EARTH ELEMENT Dy BY LASER RESONANCE IONIZATION SPECTROSCOPY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 19 -26 .
[3] ZHAN LI (詹黎), TU JIN-HONG (屠锦洪), GUO JIA-RONG (郭嘉荣). ANALYSIS OF THE GENERAL EFFECTS IN DOUBLE-GRATING DIFFRACTION-INTERFERENCE SYSTEM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 27 -44 .
[4] DING E-JIANG(丁鄂江), Lü YAN-NAN(吕燕南). THE INHOMOGENEOUS PERIODIC STATES IN A COUPLED MAP LATTICE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 3 -10 .
[5] FAN WEI-JUN (范卫军), XIA JIAN-BAI (顾宗权), GU ZONG-QUAN (夏建白), LI GUO-HUA (李国华). FIRST-PRINCIPLE SELF-CONSISTENT PSEUDOPOTENTIAL CALCULATION OF THE ELECTRONIC STRUCTURES OF SHORT-PERIOD (GaAs)m(AlAs)n SUPERLATT1CES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 45 -50 .
[6] YE HONG-JUAN (叶红娟), HU CAN-MING (胡灿明), HUANG YE-XIAO (黄叶肖), LU XIAO-FENG (陆晓峰), WANG ZHI-TAO (王志涛), ZENG WEN-SHENG (曾文生), ZHANG GUANG-YIN (张光寅), YAN SHAO-LIN (阎少林). FAR-INFRARED AND INFRARED REFLECTIONS OF Tl2Ba2Ca2Cu3O10 FILM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 51 -56 .
[7] SHEN BAO-GEN (沈保根), YANG LIN-YUAN (杨林原), GUO HUI-QUN (郭慧群). MAGNETIC PROPERTIES AND CRYSTALLIZATION OF THE RAPIDLY QUENCHED (Fe1-xNdx) 81.5B18.5 ALLOYS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 57 -62 .
[8] LIN WEI-ZHU (林位株), PENG WEN-JI (彭文基), QIU ZHI-REN (丘志仁), ZHOU XUE-CONG (周学聪), MO DANG (莫党). DYNAMICS OF CARRIER CAPTURE IN AlGaAs/GaAs MULTIPLE QUANTUM WELLS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 63 -68 .
[9] LIANG ZHONG-CHENG (梁忠诚). INTERFACE STRESS, TENSION AND FREE ENERGY DENSITY OF CONDENSED MATTER[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 104 -112 .
[10] DENG WEN-JI (邓文基), LIU YOU-YAN (刘有延), HUANG XIU-QING (黄秀清). ON THE LOCALIZATION OF ELECTRONIC STATES IN ONE-DIMENSIONAL QUASILATTICES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 113 -122 .