Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军)1,†, Liang Sun(孙亮)1,2,†, Yike Zhang(张一可)3,4, Tongzhou Ji(吉同舟)1, Rongxing Cao(曹荣幸)5, Bingfeng Miao(缪冰锋)1,2,‡, Yonggang Zhao(赵永刚)3,4,§, and Haifeng Ding(丁海峰)1,2,¶
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; 2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 3 Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China; 4 Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China; 5 College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
Abstract Recent theory and experiments show that artificial magnetic skyrmions can be stabilized at room temperature without the need for the external magnetic field, casting strong potentials for the device applications. In this work, we study the electric field manipulation of artificial magnetic skyrmions imprinted by Co disks on CoPt multilayers utilizing the micromagnetic simulations. We find that the reversible annihilation and creation of skyrmions can be realized with the electric field via the strain mediated magnetoelastic coupling. In addition, we also demonstrate controllable manipulation of individual skyrmion, which opens a new platform for constructing magnetic field-free and low-energy dissipation skyrmion based media.
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFB3502400 and 2022YFA1403601), the National Natural Science Foundation of China (Grant Nos. 12274204, 12274203, 51831005, 52172270, 11974165, 92165103, 51971110, 12004329, and 12241402).
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰) Creation and annihilation of artificial magnetic skyrmions with the electric field 2024 Chin. Phys. B 33 037501
[1] Skyrme T H R 1961 Proc. R. Soc. London Ser. A262 237 [2] Skyrme T H R 1962 Nucl. Phy.31 556 [3] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science330 1648 [4] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol.8 152 [5] Wiesendanger R 2016 Nat. Rev. Mater.1 16044 [6] Zhou Y 2019 Natl Sci. Rev.6 210 [7] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun.3 988 [8] Zhang X, Zhou Y, Ezawa M, Zhao G P and Zhao W 2015 Sci. Rep.5 11369 [9] Lin S Z, Reichhardt C and Saxena A 2013 Appl. Phys. Lett.102 222405 [10] Röβler U K, Bogdanov A N and Pfleiderer C 2006 Nature442 797 [11] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science323 915 [12] Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B81 041203 [13] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater.10 106 [14] Huang S X and Chien C L 2012 Phys. Rev. Lett.108 267201 [15] Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett.110 117202 [16] Tokunaga Y, Yu X Z, White J S, Ronnow H M, Morikawa D, Taguchi Y and Tokura Y 2015 Nat. Commun.6 7638 [17] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science349 283 [18] Chen G, Mascaraque A, N'Diaye A T and Schmid A K 2015 Appl. Phys. Lett.106 242404 [19] Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A and Ding H F 2013 Phys. Rev. Lett.110 167201 [20] Dai Y Y, Wang H, Tao P, Yang T, Ren W J and Zhang Z D 2013 Phys. Rev. B88 054403 [21] Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W and Ding H F 2014 Phys. Rev. B90 174411 [22] Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C and Qiu Z Q 2014 Nat. Commun.5 4704 [23] Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A and Liu K 2015 Nat. Commun.6 8462 [24] Miao B F, Wen Y, Yan M, Sun L, Cao R X, Wu D, You B, Jiang Z S and Ding H F 2015 Appl. Phys. Lett.107 222402 [25] Woo S, Litzius K, Krüger B, Im M-Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Kläui M and Beach G S D 2016 Nat. Mater.15 501 [26] Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S and Beach G S D 2018 Nat. Nanotechnol.13 1154 [27] Büttner F, Lemesh I, Schneider M, Pfau B, Günther C M, Hessing P, Geilhufe J, Caretta L, Engel D, Krüger B, Viefhaus J, Eisebitt S and Beach G S D 2017 Nat. Nanotechnol.12 1040 [28] Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S I, Park S Y, Kim Y, Kim J Y, Lee D, Lee O, Choi J W, Min B C, Koo H C and Chang J 2018 Nat. Commun.9 959 [29] Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett.16 1981 [30] Yu X, Morikawa D, Tokunaga Y, Kubota M, Kurumaji T, Oike H, Nakamura M, Kagawa F, Taguchi Y, Arima T H, Kawasaki M and Tokura Y 2017 Adv. Mater.29 1606178 [31] White J S, Prša K, Huang P, Omrani A A, Živković I, Bartkowiak M, Berger H, Magrez A, Gavilano J L, Nagy G, Zang J and Ronnow H M 2014 Phys. Rev. Lett.113 107203 [32] Mochizuki M and Watanabe Y 2015 Appl. Phys. Lett.107 082409 [33] Hsu P J, Kubetzka A, Finco A, Romming N, von Bergmann K and Wiesendanger R 2017 Nat. Nanotechnol.12 123 [34] Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Béa H, Baraduc C, Auffret S, Gaudin G and Givord D 2017 Nano Lett.17 3006 [35] Huang P, Cantoni M, Kruchkov A, Rajeswari J, Magrez A, Carbone F and Ronnow H M 2018 Nano Lett.18 5167 [36] Srivastava T, Schott M, Juge R, Křižáková V, Belmeguenai M, Roussigné Y, Bernand-Mantel A, Ranno L, Pizzini S, Chérif S M, Stashkevich A, Auffret S, Boulle O, Gaudin G, Chshiev M, Baraduc C and Béa H 2018 Nano Lett.18 4871 [37] Hu J M, Chen L Q and Nan C W 2016 Adv. Mater.28 15 [38] Sun Y, Ba Y, Chen A, et al. 2017 ACS Appl. Mater. Interfaces9 10855 [39] Hu J M, Yang T and Chen L Q 2018 npj Comput. Mater.4 62 [40] Ghidini M, Mansell R, Maccherozzi F, Moya X, Phillips L C, Yan W, Pesquera D, Barnes C H W, Cowburn R P, Hu J M, Dhesi S S and Mathur N D 2019 Nat. Mater.18 840 [41] Ma C, Zhang X, Xia J, Ezawa M, Jiang W, Ono T, Piramanayagam S N, Morisako A, Zhou Y and Liu X 2019 Nano Lett.19 353 [42] Xu X, Li X L, Semenov Y G and Kim K W 2019 Phys. Rev. Applied11 024051 [43] Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang X X and Liu J 2020 Nat. Commun.11 3577 [44] Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jiang W, Nan C, Hu J M and Zhao Y 2021 Nat. Commun.12 322 [45] Dumas R K, Gredig T, Li C P, Schuller I K and Liu K 2009 Phys. Rev. B80 014416 [46] Schneider M, Hoffmann H and Zweck J 2001 Appl. Phys. Lett.79 3113 [47] Donahue M J and Porter D G 1999 National Institute of Standards and Technology, Gaithersburg, MD [48] Zhou H, Fan X, Wang F, Jiang C, Rao J, Zhao X, Gui Y S, Hu C M and Xue D 2014 Appl. Phys. Lett.104 102401 [49] Peng B, Zhou Z Y, Nan T X, Dong G H, Feng M M, Yang Q, Wang X J, Zhao S S, Xian D, Zhuang-De J, Ren W, Ye Z G, Sung N X and Liu M 2017 ACS Nano11 4337 [50] Baek S H, Park J, Kim D M, et al. 2011 Science334 958 [51] Bi C, Liu Y, Newhouse-Illige T, Xu M, Rosales M, Freeland J W, Mryasov O, Zhang S, te Velthuis S G E and Wang W G 2014 Phys. Rev. Lett.113 267202 [52] Bauer U, Yao L, Tan A J, Agrawal P, Emori S, Tuller H L, van Dijken S and Beach G S D 2015 Nat. Mater.14 174 [53] Fassatoui A, Garcia J P, Ranno L, Vogel J, Bernand-Mantel A, Béa H, Pizzini S and Pizzini S 2020 Phys. Rev. Applied14 064041 [54] Hou Z P, Wang Y D, Lan X M, et al. 2022 Adv. Mater.34 2107908
[1]
Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5 Hao-Hang Xu(徐浩航), Qing-Yuan Liu(刘庆元), Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(罗军), Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(刘健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(刘志国), Ming-Xue Huo(霍明学), Xian-Jie Wang(王先杰), and Yu Sui(隋郁). Chin. Phys. B, 2024, 33(3): 037505.
Bending sensor based on flexible spin valve L I Naumova, R S Zavornitsyn, M A Milyaev, N G Bebenin, A Y Pavlova, M V Makarova, I K Maksimova, V V Proglyado, A A Zakharov, and V V Ustinov. Chin. Phys. B, 2023, 32(5): 057502.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.