Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 037501    DOI: 10.1088/1674-1056/ad188f
RAPID COMMUNICATION Prev   Next  

Creation and annihilation of artificial magnetic skyrmions with the electric field

Jun Cheng(程军)1,†, Liang Sun(孙亮)1,2,†, Yike Zhang(张一可)3,4, Tongzhou Ji(吉同舟)1, Rongxing Cao(曹荣幸)5, Bingfeng Miao(缪冰锋)1,2,‡, Yonggang Zhao(赵永刚)3,4,§, and Haifeng Ding(丁海峰)1,2,¶
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China;
4 Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China;
5 College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
Abstract  Recent theory and experiments show that artificial magnetic skyrmions can be stabilized at room temperature without the need for the external magnetic field, casting strong potentials for the device applications. In this work, we study the electric field manipulation of artificial magnetic skyrmions imprinted by Co disks on CoPt multilayers utilizing the micromagnetic simulations. We find that the reversible annihilation and creation of skyrmions can be realized with the electric field via the strain mediated magnetoelastic coupling. In addition, we also demonstrate controllable manipulation of individual skyrmion, which opens a new platform for constructing magnetic field-free and low-energy dissipation skyrmion based media.
Keywords:  skyrmions      magnetic anisotropy      micromagnetic simulations  
Received:  19 October 2023      Revised:  14 December 2023      Accepted manuscript online:  25 December 2023
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.78.Cd (Micromagnetic simulations ?)  
  12.39.Dc (Skyrmions)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFB3502400 and 2022YFA1403601), the National Natural Science Foundation of China (Grant Nos. 12274204, 12274203, 51831005, 52172270, 11974165, 92165103, 51971110, 12004329, and 12241402).
Corresponding Authors:  Bingfeng Miao, Yonggang Zhao, Haifeng Ding     E-mail:  bfmiao@nju.edu.cn;ygzhao@tsinghua.edu.cn;hfding@nju.edu.cn

Cite this article: 

Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰) Creation and annihilation of artificial magnetic skyrmions with the electric field 2024 Chin. Phys. B 33 037501

[1] Skyrme T H R 1961 Proc. R. Soc. London Ser. A 262 237
[2] Skyrme T H R 1962 Nucl. Phy. 31 556
[3] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science 330 1648
[4] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[5] Wiesendanger R 2016 Nat. Rev. Mater. 1 16044
[6] Zhou Y 2019 Natl Sci. Rev. 6 210
[7] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
[8] Zhang X, Zhou Y, Ezawa M, Zhao G P and Zhao W 2015 Sci. Rep. 5 11369
[9] Lin S Z, Reichhardt C and Saxena A 2013 Appl. Phys. Lett. 102 222405
[10] Röβler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
[11] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[12] Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B 81 041203
[13] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[14] Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201
[15] Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
[16] Tokunaga Y, Yu X Z, White J S, Ronnow H M, Morikawa D, Taguchi Y and Tokura Y 2015 Nat. Commun. 6 7638
[17] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283
[18] Chen G, Mascaraque A, N'Diaye A T and Schmid A K 2015 Appl. Phys. Lett. 106 242404
[19] Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A and Ding H F 2013 Phys. Rev. Lett. 110 167201
[20] Dai Y Y, Wang H, Tao P, Yang T, Ren W J and Zhang Z D 2013 Phys. Rev. B 88 054403
[21] Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W and Ding H F 2014 Phys. Rev. B 90 174411
[22] Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C and Qiu Z Q 2014 Nat. Commun. 5 4704
[23] Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A and Liu K 2015 Nat. Commun. 6 8462
[24] Miao B F, Wen Y, Yan M, Sun L, Cao R X, Wu D, You B, Jiang Z S and Ding H F 2015 Appl. Phys. Lett. 107 222402
[25] Woo S, Litzius K, Krüger B, Im M-Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Kläui M and Beach G S D 2016 Nat. Mater. 15 501
[26] Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S and Beach G S D 2018 Nat. Nanotechnol. 13 1154
[27] Büttner F, Lemesh I, Schneider M, Pfau B, Günther C M, Hessing P, Geilhufe J, Caretta L, Engel D, Krüger B, Viefhaus J, Eisebitt S and Beach G S D 2017 Nat. Nanotechnol. 12 1040
[28] Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S I, Park S Y, Kim Y, Kim J Y, Lee D, Lee O, Choi J W, Min B C, Koo H C and Chang J 2018 Nat. Commun. 9 959
[29] Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett. 16 1981
[30] Yu X, Morikawa D, Tokunaga Y, Kubota M, Kurumaji T, Oike H, Nakamura M, Kagawa F, Taguchi Y, Arima T H, Kawasaki M and Tokura Y 2017 Adv. Mater. 29 1606178
[31] White J S, Prša K, Huang P, Omrani A A, Živković I, Bartkowiak M, Berger H, Magrez A, Gavilano J L, Nagy G, Zang J and Ronnow H M 2014 Phys. Rev. Lett. 113 107203
[32] Mochizuki M and Watanabe Y 2015 Appl. Phys. Lett. 107 082409
[33] Hsu P J, Kubetzka A, Finco A, Romming N, von Bergmann K and Wiesendanger R 2017 Nat. Nanotechnol. 12 123
[34] Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Béa H, Baraduc C, Auffret S, Gaudin G and Givord D 2017 Nano Lett. 17 3006
[35] Huang P, Cantoni M, Kruchkov A, Rajeswari J, Magrez A, Carbone F and Ronnow H M 2018 Nano Lett. 18 5167
[36] Srivastava T, Schott M, Juge R, Křižáková V, Belmeguenai M, Roussigné Y, Bernand-Mantel A, Ranno L, Pizzini S, Chérif S M, Stashkevich A, Auffret S, Boulle O, Gaudin G, Chshiev M, Baraduc C and Béa H 2018 Nano Lett. 18 4871
[37] Hu J M, Chen L Q and Nan C W 2016 Adv. Mater. 28 15
[38] Sun Y, Ba Y, Chen A, et al. 2017 ACS Appl. Mater. Interfaces 9 10855
[39] Hu J M, Yang T and Chen L Q 2018 npj Comput. Mater. 4 62
[40] Ghidini M, Mansell R, Maccherozzi F, Moya X, Phillips L C, Yan W, Pesquera D, Barnes C H W, Cowburn R P, Hu J M, Dhesi S S and Mathur N D 2019 Nat. Mater. 18 840
[41] Ma C, Zhang X, Xia J, Ezawa M, Jiang W, Ono T, Piramanayagam S N, Morisako A, Zhou Y and Liu X 2019 Nano Lett. 19 353
[42] Xu X, Li X L, Semenov Y G and Kim K W 2019 Phys. Rev. Applied 11 024051
[43] Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang X X and Liu J 2020 Nat. Commun. 11 3577
[44] Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jiang W, Nan C, Hu J M and Zhao Y 2021 Nat. Commun. 12 322
[45] Dumas R K, Gredig T, Li C P, Schuller I K and Liu K 2009 Phys. Rev. B 80 014416
[46] Schneider M, Hoffmann H and Zweck J 2001 Appl. Phys. Lett. 79 3113
[47] Donahue M J and Porter D G 1999 National Institute of Standards and Technology, Gaithersburg, MD
[48] Zhou H, Fan X, Wang F, Jiang C, Rao J, Zhao X, Gui Y S, Hu C M and Xue D 2014 Appl. Phys. Lett. 104 102401
[49] Peng B, Zhou Z Y, Nan T X, Dong G H, Feng M M, Yang Q, Wang X J, Zhao S S, Xian D, Zhuang-De J, Ren W, Ye Z G, Sung N X and Liu M 2017 ACS Nano 11 4337
[50] Baek S H, Park J, Kim D M, et al. 2011 Science 334 958
[51] Bi C, Liu Y, Newhouse-Illige T, Xu M, Rosales M, Freeland J W, Mryasov O, Zhang S, te Velthuis S G E and Wang W G 2014 Phys. Rev. Lett. 113 267202
[52] Bauer U, Yao L, Tan A J, Agrawal P, Emori S, Tuller H L, van Dijken S and Beach G S D 2015 Nat. Mater. 14 174
[53] Fassatoui A, Garcia J P, Ranno L, Vogel J, Bernand-Mantel A, Béa H, Pizzini S and Pizzini S 2020 Phys. Rev. Applied 14 064041
[54] Hou Z P, Wang Y D, Lan X M, et al. 2022 Adv. Mater. 34 2107908
[1] Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5
Hao-Hang Xu(徐浩航), Qing-Yuan Liu(刘庆元), Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(罗军), Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(刘健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(刘志国), Ming-Xue Huo(霍明学), Xian-Jie Wang(王先杰), and Yu Sui(隋郁). Chin. Phys. B, 2024, 33(3): 037505.
[2] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[3] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[4] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
[5] Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军). Chin. Phys. B, 2023, 32(6): 067505.
[6] Bending sensor based on flexible spin valve
L I Naumova, R S Zavornitsyn, M A Milyaev, N G Bebenin, A Y Pavlova, M V Makarova, I K Maksimova, V V Proglyado, A A Zakharov, and V V Ustinov. Chin. Phys. B, 2023, 32(5): 057502.
[7] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[8] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[9] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[10] Effect of seed layers on the static and dynamic magnetic properties of CoIr films with negative effective magnetocrystalline anisotropy
Tianyong Ma(马天勇), Sha Zhang(张莎), Chenhu Zhang(张晨虎), Zhiwei Li(李志伟), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2023, 32(12): 127503.
[11] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[12] Enhanced ferromagnetism and conductivity of ultrathin freestanding La0.7Sr0.3MnO3 membranes
Siqi Shan(单思齐), Yequan Chen(陈业全), Yongda Chen(陈勇达), Wenzhuo Zhuang(庄文卓), Ruxin Liu(刘汝新), Xu Zhang(张旭), Rong Zhang(张荣), and Xuefeng Wang(王学锋). Chin. Phys. B, 2023, 32(10): 107402.
[13] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[14] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[15] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
No Suggested Reading articles found!