CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low Gilbert damping in Bi/In-doped YIG thin films with giant Faraday effect |
Jin Zhan(湛劲)1, Yi Wang(王一)1, Xianjie Wang(王先杰)1,5,6,†, Hanxu Zhang(张晗旭)1, Senyin Zhu(朱森寅)1, Lingli Zhang(张伶莉)1, Lingling Tao(陶玲玲)1, Yu Sui(隋郁)1, Wenqing He(何文卿)2, Caihua Wan(万蔡华)2, Xiufeng Han(韩秀峰)2, V. I. Belotelov3, and Bo Song(宋波)4,5,6,‡ |
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China; 2 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Russian Quantum Center, Moscow 119991, Russia; 4 National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China; 5 Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China; 6 Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract Magnetic films with low Gilbert damping are crucial for magnonic devices, which provide a promising platform for realizing ultralow-energy devices. In this study, low Gilbert damping and coercive field were observed in Bi/In-doped yttrium iron garnet (BiIn:YIG) thin films. The BiIn:YIG (444) films were deposited onto different substrates using pulsed laser deposition. Low coercivity ($<$1 Oe) with saturation magnetization of 125.09 emu/cc was achieved along the in-plane direction of BiIn:YIG film. The values of Gilbert damping and inhomogeneous broadening of ferromagnetic resonance in BiIn:YIG films were obtained to be as low as $4.05\times 10^{-4}$ and 5.62 Oe, respectively. In addition to low damping, the giant Faraday rotation angles (up to $2.9\times 10^{4}$ deg/cm) were also observed in the BiIn:YIG film. By modifying the magnetic structure and coupling effect between Bi$^{3+}$ and Fe$^{3+}$ of Bi:YIG, doped In$^{3+}$ plays a key role on variation of the magnetic properties. The low damping and giant Faraday effect made the BiIn:YIG film an appealing candidate for magnonic and magneto-optical devices.
|
Received: 21 May 2024
Revised: 15 July 2024
Accepted manuscript online: 06 August 2024
|
PACS:
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
78.20.Ls
|
(Magneto-optical effects)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2023YFE0201000), the National Science Fund for Distinguished Young Scholars (Grant No. 52225201), the National Natural Science Foundation of China (Grant Nos. 52372004 and 52072085), the Fundamental Research Funds for the Central Universities (Grant Nos. 2023FRFK06001 and HIT.BRET.2022001), and Heilongjiang Touyan Innovation Team Program. |
Corresponding Authors:
Xianjie Wang, Bo Song
E-mail: wangxianjie@hit.edu.cn;songbo@hit.edu.cn
|
Cite this article:
Jin Zhan(湛劲), Yi Wang(王一), Xianjie Wang(王先杰), Hanxu Zhang(张晗旭), Senyin Zhu(朱森寅), Lingli Zhang(张伶莉), Lingling Tao(陶玲玲), Yu Sui(隋郁), Wenqing He(何文卿), Caihua Wan(万蔡华), Xiufeng Han(韩秀峰), V. I. Belotelov, and Bo Song(宋波) Low Gilbert damping in Bi/In-doped YIG thin films with giant Faraday effect 2024 Chin. Phys. B 33 107505
|
[1] Zhang S S L and Zhang S 2012 Phys. Rev. Lett. 109 096603 [2] Zhang S S L and Zhang S 2012 Phys. Rev. B 86 214424 [3] Wu H, Huang L, Fang C, Yang B S, Wan C H, Yu G Q, Feng J F, Wei H X and Han X F 2018 Phys. Rev. Lett. 120 097205 [4] Guo C Y, Wan C H, Wang X, Fang C, Tang P, Kong W J, Zhao M K, Jiang L N, Tao B S and Yu G Q 2018 Phys. Rev. B 98 134426 [5] He W, Wu H, Guo C, Wan C, Zhao M, Xing Y, Tang P, Yan Z, Xia J and Yu T 2021 Appl. Phys. Lett. 119 212410 [6] Guo C Y, Wan C H, He W Q, Zhao M K, Yan Z R, Xing Y W, Wang X, Tang P, Liu Y Z and Zhang S 2020 Nat. Electron. 3 304 [7] Wang C, Cao Y, Wang X R and Yan P 2018 Phys. Rev. B 98 144417 [8] Lin W, Chen K, Zhang S and Chien C L 2016 Phys. Rev. Lett. 116 186601 [9] Nozue T, Kikkawa T, Watamura T, Niizeki T, Ramos R, Saitoh E and Murakami H 2018 Appl. Phys. Lett. 113 262402 [10] Hu Y, Weir M P, Pereira H J, Amin O J, Pitcairn J, Cliffe M J, Rushforth A W, Kunakova G, Niherysh K, Korolkov V, Kertfoot J, Makarovsky O and Woodward S 2023 Appl. Phys. Lett. 123 223902 [11] Hansen P, Witter K and Tolksdorf W 1983 Phys. Rev. B 27 6608 [12] Matsumoto K, Sasaki S, Haraga K I, Yamaguchi K, Fujii T and Asahara Y 1992 J. Appl. Phys. 71 2467 [13] Fakhrul T, Tazlaru S, Beran L, Zhang Y, Veis M and Ross C A 2019 Adv. Opt. Mater. 7 1900056 [14] Wittekoek S, Popma T J, Robertson J and Bongers P 1975 Phys. Rev. B 12 2777 [15] Fan Y, Gross M J, Fakhrul T, Finley J, Hou J T, Ngo S, Liu L and Ross C A 2023 Nat. Nanotechnol. 18 1000 [16] Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J and Beach G S D 2020 Science 370 1438 [17] Kirihara A, Uchida K i, Kajiwara Y, Ishida M, Nakamura Y, Manako T, Saitoh E and Yorozu S 2012 Nat. Mater. 11 686 [18] Fakhrul T, Khurana B, Nembach H T, Shaw J M, Fan Y, Riley G A, Liu L and Ross C A 2023 Adv. Mater. Interfaces 10 2300217 [19] Siegel G, Prestgard M C, Teng S and Tiwari A 2014 Sci. Rep. 4 4429 [20] Kikuchi D, Ishida M, Uchida K, Qiu Z, Murakami T and Saitoh E 2015 Appl. Phys. Lett. 106 082401 [21] Merbouche H, Divinskiy B, Gouéré D, Lebrun R, El Kanj A, Cros V, Bortolotti P, Anane A, Demokritov S O and Demidov V E 2024 Nat. Commun. 15 1560 [22] Soumah L, Beaulieu N, Qassym L, Carrétéro C, Jacquet E, Lebour- geois R, Ben Youssef J, Bortolotti P, Cros V and Anane A 2018 Nat. Commun. 9 3355 [23] Alam M S, Wang C, Chen J, Zhang J, Liu C, Xiao J, Wu Y, Bi L and Yu H 2019 Phys. Lett. A 383 366 [24] Zhou L, Song H, Liu K, Luan Z, Wang P, Sun L, Jiang S, Xiang H, Chen Y and Du J 2018 Sci. Adv. 4 eaao3318 [25] Zhang H X, Zhu S Y, Zhan J, Wang X J, Wang Y, Yao T, Mezin N I and Song B 2023 Chin. Phys. Lett. 40 127801 [26] Sun Y, Song Y Y, Chang H, Kabatek M, Jantz M, Schneider W, Wu M, Schultheiss H and Hoffmann A 2012 Appl. Phys. Lett. 101 152405 [27] Liu T, Chang H, Vlaminck V, Sun Y, Kabatek M, Hoffmann A, Deng L and Wu M 2014 J. Appl. Phys. 115 17A501 [28] Nazlan R, Hashim M, Ibrahim I R, Mohd Idris F, Wan Ab Rahman W N, Abdullah N H, Ismail I, Kanagesan S, Abbas Z and Azis R S 2015 J. Mater. Sci.: Mater. Electron. 26 3596 [29] Jia Y, Liang Z, Pan H, Wang Q, Lv Q, Yan Y, Jin F, Hou D, Wang L and Wu W 2023 Chin. Phys. B 32 027501 [30] Yang Q H, Zhnag H W, Wen Q Y, Liu Y L, Ihor M S and Ihor I S 2009 Chin. Phys. Lett. 26 047401 [31] Ibrahim N B, Edwards C and Palmer S B 2000 J. Magn. Magn. Mater. 220 183 [32] Krishnan R 1977 Appl. Phys. Lett. 31 237 [33] Geller S and Gilleo M A 1957 J. Phys. Chem. Solids 3 30 [34] Geschwind S 1961 J. Appl. Phys. 32 S263 [35] Gallagher J C, Yang A S, Brangham J T, Esser B D, White S P, Page M R, Meng K Y, Yu S, Adur R and Ruane W 2016 Appl. Phys. Lett. 109 072401 [36] Lin Y, Jin L, Zhang H, Zhong Z, Yang Q, Rao Y and Li M 2020 J. Magn. Magn. Mater. 496 165886 [37] Ding J, Liu C, Zhang Y, Erugu U, Quan Z, Yu R, McCollum E, Mo S, Yang S, Ding H, Xu X, Tang J, Yang X and Wu M 2020 Phys. Rev. Appl. 14 014017 [38] Gilleo M A and Geller S 1958 J. Appl. Phys. 29 380 [39] Hauser C, Richter T, Homonnay N, Eisenschmidt C, Qaid M, Deniz H, Hesse D, Sawicki M, Ebbinghaus S G and Schmidt G 2016 Sci. Rep. 6 20827 [40] Kumar R, Samantaray B and Hossain Z 2019 J. Phys.: Condens. Matter 31 435802 [41] Gurjar G, Sharma V, Patnaik S and Kuanr B K 2021 Mater. Res. Express 8 066401 [42] Petit S, Baraduc C, Thirion C, Ebels U, Liu Y, Li M, Wang P and Dieny B 2007 Phys. Rev. Lett. 98 077203 [43] Kang C, Wang T, Jiang C, Chen K and Chai G 2021 J. Alloys Compd. 865 158903 [44] Wang W, Li P, Cao C, Liu F, Tang R, Chai G and Jiang C 2018 Appl. Phys. Lett. 113 042401 [45] Kalarickal S S, Krivosik P, Wu M, Patton C E, Schneider M L, Kabos P, Silva T J and Nibarger J P 2006 J. Appl. Phys. 99 093909 [46] Kehlberger A, Richter K, Onbasli M C, Jakob G, Kim D H, Goto T, Ross C A, Götz G, Reiss G, Kuschel T and Kläui M 2015 Phys. Rev. Appl. 4 014008 [47] Vasili H B, Casals B, Cichelero R, Macià F, Geshev J, Gargiani P, Valvidares M, Herrero-Martin J, Pellegrin E, Fontcuberta J and Herranz G 2017 Phys. Rev. B 96 014433 [48] Grachev A A, Sheshukova S E, Kostylev M P, Nikitov S A and Sadovnikov A V 2023 Phys. Rev. Appl. 19 054089 [49] Zhao Z, Zhang L, Chen Y, Zhong Z, Tang X, Zhang Y, Zhang H and Jin L 2024 Appl. Phys. Lett. 124 052405 [50] Han J, Zhang P, Hou J T, Siddiqui S A and Liu L 2019 Science 366 1121 [51] Liu Q B, Meng K K, Xu Z D, Zhu T, Xu X G, Miao J and Jiang Y 2020 Phys. Rev. B 101 174431 [52] Hurben M J and Patton C E 1998 J. Appl. Phys. 83 4344 [53] Zenkov A V, Moskvin A S 2002 J. Phys.: Condens. Matter 14 6957 [54] Parchenko S, Stupakiewicz A, Yoshimine I, Satoh T and Maziewski A 2013 Appl. Phys. Lett. 103 172402 [55] Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O and Shaw J M 2016 Nat. Phys. 12 839 [56] Xu K, Zhang L, Godfrey A, Song D, Si W, Zhao Y, Liu Y, Rao Y, Zhang H and Zhou H A 2021 Proc. Natl. Acad. Sci. USA 118 e2101106118 [57] Liang X, Xie J, Deng L and Bi L 2015 Appl. Phys. Lett. 106 052401 [58] Crossley W A, Cooper R W, Page J L and Van Stapele R P 1970 Phys. Rev. B 1 4503 [59] Takeuchi H, Shinagawa K and Taniguchi S 1973 Jpn. J. Appl. Phys. 12 465 [60] Alam M N E, Vasiliev M and Alameh K 2014 Opt. Mater. Express 4 1866 [61] Nur-E-Alam M, Vasiliev M and Alameh K 2017 Opt. Mater. Express 7 676 [62] Kuila M, Deshpande U, Choudhary R J, Rajput P, Phase D M and Raghavendra Reddy V 2021 J. Appl. Phys. 129 093903 [63] Dionne G F and Allen G A 1993 J. Appl. Phys. 73 6127 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|