Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107503    DOI: 10.1088/1674-1056/ad6556
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced soft magnetic properties of SiO2-coated FeSiCr magnetic powder cores by particle size effect

Mingyue Ge(葛铭悦)1, Likang Xiao(肖礼康)2, Xiaoru Liu(刘潇如)1, Lin Pan(潘嶙)3, Zhangyang Zhou(周章洋)3, Jianghe La(蓝江河)2, Zhengwei Xiong(熊政伟)1,4,†, Jichuan Wu(吴冀川)3,‡, and Zhipeng Gao(高志鹏)1,3,§
1 Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China;
2 Southwest Institute of Applied Magnetism, Mianyang 621010, China;
3 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
4 Sichuan Civil-military Integration Institute, Mianyang 621010, China
Abstract  It has been known that metal FeSiCr powders with large average particle sizes have been typically employed to prepare magnetic powder cores (SMCs), with few studies reported on the influence of magnetic properties for original powders with various average particle sizes less than 10 μm. In this work, SiO$_{2}$-coated FeSiCr SMCs with different small particle sizes were synthesized using the sol-gel process. The contribution of SiO$_{2}$ coating amount and voids to the soft magnetic properties was elaborated. The mechanism was revealed such that smaller particle sizes with less voids could be beneficial for reducing core loss in the SMCs. By optimizing the core structure, permeability and magnetic loss of 26 and 262 kW/cm$^{3}$ at 100 kHz and 50 mT were achieved at a particle size of 4.8 μm and ethyl orthosilicate addition of 0.1 mL/g. The best DC stacking performance, reaching 87%, was observed at an ethyl orthosilicate addition rate of 0.25 mL/g under 100 Oe. Compared to other soft magnetic composites (SMCs), the FeSiCr/SiO$_{2}$ SMCs exhibit significantly reduced magnetic loss. It further reduces the magnetic loss of the powder core, providing a new strategy for applications of SMCs at high frequencies.
Keywords:  FeSiCr      SiO$_{2}$      size effect      magnetic properties      DC superposition  
Received:  09 May 2024      Revised:  02 July 2024      Accepted manuscript online:  19 July 2024
PACS:  75.47.Np (Metals and alloys)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. U2230119 and U23A20567), 2022 Central Guidance on Local Science and Technology Development Projects (Grant No. 2022ZYDF073), and Outstanding Youth Fund of Sichuan Province (Grant No. 22JCQN0005).
Corresponding Authors:  Zhengwei Xiong, Jichuan Wu, Zhipeng Gao     E-mail:  zw-xiong@swust.edu.cn;junhuawu123@sina.cn;z.p.gao@foxmail.com

Cite this article: 

Mingyue Ge(葛铭悦), Likang Xiao(肖礼康), Xiaoru Liu(刘潇如), Lin Pan(潘嶙), Zhangyang Zhou(周章洋), Jianghe La(蓝江河), Zhengwei Xiong(熊政伟), Jichuan Wu(吴冀川), and Zhipeng Gao(高志鹏) Enhanced soft magnetic properties of SiO2-coated FeSiCr magnetic powder cores by particle size effect 2024 Chin. Phys. B 33 107503

[1] Silveyra J M, Ferrara E, Huber D L and Monso T C 2018 Science 362 eaao0195
[2] Gutfleisch O, Willard M A, Brück E, Chen C H, Sanker S and Liu J P 2011 Adv. Mater. 23 821
[3] Long J, Ding W and Yang Y 2013 Corrosion Sci. 201 110303
[4] Zhou T D, Tang J K and Wang Z Y 2010 J. Magn. Magn. Mater. 322 2589
[5] Chen S F, Chang H Y, Wang S J, Chen S H and Chen C C 2015 J. Alloys Compd. 637 30
[6] Xu H P, Wang R W, Wei D and Zeng C 2015 J. Magn. Magn. Mater. 385 326
[7] Wang J, Wu Z and Li G 2015 Mater. Sci. Eng. B 201 79
[8] Peng Y D, Nie J W, Zhang W J, Ma J, Bao C X and Cao Y 2016 J. Magn. Magn. Mater. 399 88
[9] Zhong X X, Chen J C, Wang L, Li B J and Li L Z 2018 J. Alloys Compd. 735 1603
[10] Lai J M, Xiao L K, Xiong Z W, Fang L M, Zhu W K, Kuang F G and Gao Z P 2023 RSC Adv. 13 15892
[11] Wang J, Liu X, Li L and Mao X H 2012 J. Cent. South Univ. 28 1266
[12] Guo R D, Yu G L, Zhu M M, Qiu Y, Wu G H and Zhou H M 2022 J. Alloys Compd. 895 162724
[13] Kang E Y and Chung Y H 2009 IEEE Trans. Magn. 45 2597
[14] Luo H, Wang X, Song K and Yang J 2016 J. Electron. Mater. 45 4202
[15] Shokrollahi H, Janghorban K and Mazaleyrat F 2009 Mater. Chem. Phys. 114 588
[16] Yu H Y, Lai X X, Zhong X C, Liu Z W, Guo B C, Chen X and Han G Z 2023 Mater. Chem. Phys. 303 127765
[17] Hsiang H I, Wang S K and Chen C C 2020 J. Magn. Magn. Mater. 514 167151
[18] Zhu Z Q, Wang P, Liu J Q, Lan P, Pang J and Zhang J Q 2023 Magn. Magn. Mater. 588 171413
[19] Woo H J, Ahn J H, Kim C P, Choi D H, Kim S and Lee B W 2022 J. Non-Cryst. Solids 577 121309
[20] Schubert D W, Werner S, Hahn I and Solovieva V 2019 Compos. Sci. Technol. 04 26
[21] Taghvaei A H, Shokrollahi H, Janghorban K and Abiri H 2009 Mater. Des. 30 3989
[22] Shokrollahi H and Janghorban H 2007 J. Mater. Process. Technol. 189 1
[23] Pontes G, Schneider R, Senesi G S and Nicolodelli G 2024 J. NonCryst. Solids 627 122814
[24] Neamţu B V, Geoffroy O, Chicinaş I and Isnard O 2012 Mater. Sci. Eng. B 177 661
[25] Zhou B, Dong Y Q, Chi Q, Zhang Y Q, Chang L, Gong M G, Huang J J, Pan Y and Wang X M 2020 Ceram. Int. 46 13449
[26] Wu S D, Dong Y Q, Li X B, Gong M J, Zhao R L, Gao W, Wu H, He A, Li J W, Wang X M and Liu X C 2022 Ceram. Int. 48 22237
[27] Wang L L, Qiao L, Zheng J, Cai W, Ying Y, Li W C, Che S L and Yu J 2018 J. Magn. Magn. Mater. 452 210
[28] Geng K J, Xie Y Y, Yan L and Yan B 2017 J. Alloys Compd. 718 53
[29] Lei J, Zheng J W, Zheng H D, Qiao L, Ying Y, Cai W, Li W C, Yu J, Lin M and Che S L 2019 J. Magn. Magn. Mater. 472 7
[30] Wang F L, Dong Y Q, Chang L, Pan Y, Chi Q, Gong M J, Li J W, He A and Wang X M 2021 J. Solid State Chem. 304 122634
[31] Beijing Seven Star Flight Electronics Co. FeSi Powder Cores Performance Data.
[32] MAGNETICS, FeSi Powder Cores Performance Data
[33] Chang Sung Corporation, FeSi Powder Cores Performance Data
[34] Zhejiang Dongmu Keda Magnetic Electric Co., Ltd. FeSi Cores Performance Data.
[35] Zhao R L, Dong Y Q, Wu S D, Li X B, Liu Z H, Jia X J, Liu X, Wu H, Gao W, He A J and Li J W 2023 Adv. Powder Technol. 34 103952
[36] Wang Y, Jing Y L, Wang P, Li Y X, Lu Q H and Tang X L 2020 J. Magn. Magn. Mater. 514 167182
[1] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[2] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[3] Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
Shiyue He(何诗悦), Ruoshui Liu(刘若水), Xujie Liu(刘煦婕), Xianping Ye(叶先平), Lichen Wang(王利晨), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(6): 066801.
[4] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[5] Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣). Chin. Phys. B, 2024, 33(4): 047301.
[6] Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
Fengguo Fan(范凤国) and Lintong Duan(段林彤). Chin. Phys. B, 2024, 33(3): 037502.
[7] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[8] Impact of Co2+ substitution on structure and magnetic properties of M-type strontium ferrite with different Fe/Sr ratios
Yang Sun(孙洋), Ruoshui Liu(刘若水), Huayang Gong(宫华扬), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(10): 107506.
[9] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[10] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[11] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[12] Analysis on the cation distribution of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) using Mössbauer spectroscopy and magnetic measurement
Shiyu Xu(徐诗语), Jiajun Mo(莫家俊), Lebin Liu(刘乐彬), and Min Liu(刘 敏). Chin. Phys. B, 2023, 32(12): 127507.
[13] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[14] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[15] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
No Suggested Reading articles found!