Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 036401    DOI: 10.1088/1674-1056/ad1823
RAPID COMMUNICATION Prev   Next  

Effect of overheating-induced minor addition on Zr-based metallic glasses

Fu Yang(杨福)1,2, Zhenxing Bo(薄振兴)1,2, Yao Huang(黄瑶)1,2, Yutian Wang(王雨田)1,2, Boyang Sun(孙博阳)1,2, Zhen Lu(鲁振)1, Baoan Sun(孙保安)1,4, Yanhui Liu(柳延辉)1,2,3,†, Weihua Wang(汪卫华)1,3,4, and Mingxiang Pan(潘明祥)1,3,4,‡
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Melt treatment is well known to have an important influence on the properties of metallic glasses (MGs). However, for the MGs quenched from different melt temperatures with a quartz tube, the underlying physical origin responsible for the variation of properties remains poorly understood. In the present work, we systematically studied the influence of melt treatment on the thermal properties of a Zr50Cu36Al14 glass-forming alloy and unveiled the microscopic origins. Specifically, we quenched the melt at different temperatures ranging from 1.1Tl to 1.5Tl (Tl is the liquidus temperature) to obtain melt-spun MG ribbons and investigated the variation of thermal properties of the MGs upon heating. We found that glass transition temperature, Tg, increases by as much as 36 K, and the supercooled liquid region disappears in the curve of differential scanning calorimetry when the melt is quenched at a high temperature up to 1.5Tl. The careful chemical analyses indicate that the change in glass transition behavior originates from the incorporation of oxygen and silicon in the molten alloys. The incorporated oxygen and silicon can both enhance the interactions between atoms, which renders the cooperative rearrangements of atoms difficult, and thus enhances the kinetic stability of the MGs.
Keywords:  metallic glass      thermal properties      melt treatment      overheating      oxygen content  
Received:  30 November 2023      Revised:  20 December 2023      Accepted manuscript online:  22 December 2023
PACS:  64.70.pe (Metallic glasses)  
  63.50.Lm (Glasses and amorphous solids)  
  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
  81.05.Kf (Glasses (including metallic glasses))  
Fund: The work was financially supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0703600, 2021YFA0716302, and 2021YFA0718703), the National Natural Science Foundation of China (Grant Nos. 51825104 and 52192602), and China Postdoctoral Science Foundation (Grant No. 2022T150691).
Corresponding Authors:  Yanhui Liu, Mingxiang Pan     E-mail:  yanhui.liu@iphy.ac.cn;panmx@iphy.ac.cn

Cite this article: 

Fu Yang(杨福), Zhenxing Bo(薄振兴), Yao Huang(黄瑶), Yutian Wang(王雨田), Boyang Sun(孙博阳), Zhen Lu(鲁振), Baoan Sun(孙保安), Yanhui Liu(柳延辉), Weihua Wang(汪卫华), and Mingxiang Pan(潘明祥) Effect of overheating-induced minor addition on Zr-based metallic glasses 2024 Chin. Phys. B 33 036401

[1] Dyre J C 2006 Rev. Mod. Phys. 78 953
[2] Inoue A, Shen B, Koshiba H, Kato H and Yavari A R 2003 Nat. Mater. 2 661
[3] Wang W H, Dong C and Shek C H 2004 Materials Science and Engineering: R: Reports 44 45
[4] Wang J, Li R, Hua N and Zhang T 2011 J. Mater. Res. 26 2072
[5] Wang W H 2012 Prog. Mater. Sci. 57 487
[6] Huo J, Li K, Zang B, Gao M, Wang L M, Sun B, Li M, Song L, Wang J Q and Wang W H 2022 Chin. Phys. Lett. 39 046401
[7] Telford M 2004 Materials Today 7 36
[8] Yi J, Xia X X, Zhao D Q, Pan M X, Bai H Y and Wang W H 2010 Advanced Engineering Materials 12 1117
[9] Tian L, Cheng Y Q, Shan Z W, Li J, Wang C C, Han X D, Sun J and Ma E 2012 Nat. Commun. 3 609
[10] Duan G, Wiest A, Lind M L, Li J, Rhim W K and Johnson W L 2007 Adv. Mater. 19 4272
[11] Kumar G, Tang H X and Schroers J 2009 Nature 457 868
[12] Schroers J 2010 Adv. Mater. 22 1566
[13] Lu T, Liu S L, Sun Y H, Wang W H and Pan M X 2022 Chin. Phys. Lett. 39 036401
[14] Fan C and Inoue A 1999 Appl. Phys. Lett. 75 3644
[15] Mukherjee S, Zhou Z, Schroers J, Johnson W L and Rhim W K 2004 Appl. Phys. Lett. 84 5010
[16] Lee J K, Bae D H, Kim W T and Kim D H 2004 Materials Science and Engineering: A 375-377 332
[17] Fan C, Chen D, Liaw P K, Choo H, Benmore C, Siewenie J, Chen G L, Xie J X and Liu C T 2008 Appl. Phys. Lett. 93 261905
[18] Zhu Z W, Zhang H F, Wang H, Ding B Z and Hu Z Q 2008 J. Mater. Res. 23 2714
[19] Mu J A, Fu H M, Zhu Z W, Wang A M, Li H, Hu Z Q and Zhang H F 2010 Advanced Engineering Materials 12 1127
[20] Zhao Y, Kou S, Suo H, Wang R and Ding Y 2010 Materials & Design 31 1029
[21] Mao J, Zhang H F, Fu H M, Wang A M, Li H and Hu Z Q 2010 J. Alloys Compd. 496 595
[22] Fan C, Liu C T, Chen G, Chen G, Chen D, Yang X, Liaw P K and Yan H G 2013 Intermetallics 38 19
[23] Cui X, Zhang Q D, Li X Y and Zu F Q 2016 Intermetallics 73 79
[24] Cui X, Zhang Q D, Li X Y and Zu F Q 2016 J. Non-Cryst. Solids 452 336
[25] Wang X H, Inoue A, Kong F L, Zhu S L, Stoica M, Kaban I, Chang C T, Shalaan E, Al-Marzouki F and Eckert J 2016 Acta Mater. 116 370
[26] Wang X H, Inoue A, Zhao J F, Kong F L, Zhu S L, Kaban I, Stoica M, Oswald S, Fan C, Shalaan E, Al-Marzouki F, Eckert J, Yin F X and Li Q 2018 J. Alloys Compd. 739 1104
[27] Kumar G, Ohkubo T and Hono K 2009 J. Mater. Res. 24 2353
[28] Mao J, Zhang H F, Fu H M, Wang A M, Li H and Hu Z Q 2010 Materials Science and Engineering: A 527 981
[29] Cheng Q, Sun Y H, Orava J and Wang W H 2023 Materials Today Physics 31 101004
[30] Chen C, Zhao R, Yin B, Chathoth S M, Inoue A, Embs J P, Zhang F, He Y, Li X, Chen Z, Zhang P and Shen B 2023 J. Alloys Compd. 967 171691
[31] Mao J, Zhang H F, Fu H M, Wang A M, Li H and Hu Z Q 2009 Advanced Engineering Materials 11 986
[32] Mu J, Fu H, Zhu Z, Wang A, Li H, Hu Z and Zhang H 2009 Advanced Engineering Materials 11 530
[33] Zhu Z, Zhang H, Wang H, Ding B, Hu Z Q and Huang H 2009 J. Mater. Res. 24 3108
[34] Liu J, Guo J, Hu X, Guo S, Meng W and Xiao Q 2013 J. Alloys Compd. 581 671
[35] Jin Z, Cao F, Cao G, Zhang C, Qiu Z, Zhang L, Shen H, Jiang S, Huang Y, Ma M, Jürgen E and Sun J 2023 Journal of Materials Research and Technology 22 3010
[36] Ouyang D L, Yan Y H, Chen S S, Huang D, Wang Z R, Cui X, Hu Q and Guo S 2023 J. Non-Cryst. Solids 603 122118
[37] Luborsky F E and Liebermann H H 1981 Materials Science and Engineering 49 257
[38] Manov V P, Popel S I, Buler P I, Manukhin A B and Komlev D G 1991 Materials Science and Engineering: A 133 535
[39] Zhang S, Zhu W, Han C, Li W, Wang T, Chen C, Wei R, Wu S and Li F 2022 Intermetallics 151 107741
[40] Gao H, Li Z, Zhou S, Zhang G and Cui N 2019 Progress in Natural Science: Materials International 29 556
[41] Hu Y, Li J, Lin T and Zhou Y 2009 J. Mater. Res. 24 3590
[42] Zhou X, Kou H, Wang J, Li J and Zhou L 2012 Intermetallics 28 45
[43] Mohammadi Rahvard M, Tamizifar M and Boutorabi S M A 2018 J. Non-Cryst. Solids 491 114
[44] Zhang X, Xu K, Yang X, Cui X, Bian B, Zhang X, Hou S and Chen J 2021 AIP Advances 11 075105
[45] Du S, Li C, Pang S, Leng J and Geng H 2013 Materials & Design 47 358
[46] Zhang X, Guo J, Liu H, Song Y, Xu L and Liu J 2016 Materials & Design 100 217
[47] Zhu P, Li X, Zhang Q, Liu B, Ma Y and Zu F 2017 J. Non-Cryst. Solids 471 175
[48] Cui X, Li J J, Qiao J C, Guo J, Zu F Q, Zhang X F, Meng X J, Bian B C and Zhang Q D 2020 J. Non-Cryst. Solids 543 120100
[49] Mo J, Shen B, Wan Y, Zhou Z, Sun B and Liang X 2020 J. Non-Cryst. Solids 528 119742
[50] Ashby M and Greer A 2006 Scr. Mater. 54 321
[51] Wang W H 2007 Prog. Mater. Sci. 52 540
[52] Angell C A 1995 Science 267 1924
[53] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[54] Xue R J, Zhao L Z, Shi C L, Ma T, Xi X K, Gao M, Zhu P W, Wen P, Yu X H, Jin C Q, Pan M X, Wang W H and Bai H Y 2016 Appl. Phys. Lett. 109 221904
[55] Zhang S, Wang W H and Guan P F 2021 Chin. Phys. Lett. 38 016802
[56] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A and Wang W H 2013 Appl. Phys. Lett. 102 101903
[57] Kissinger H E 1956 Journal of Research of the National Bureau of Standards 57 217
[58] Williams G and Watts D C 1970 Transactions of the Faraday Society 66 80
[59] Williams G, Watts D C, Dev S B and North A M 1971 Transactions of the Faraday Society 67 1323
[60] Stevenson J D, Schmalian J and Wolynes P G 2006 Nat. Phys. 2 268
[61] Ligero R A, Vazquez J, Villares P and Jimenezgaray R 1989 Mater. Lett. 8 6
[62] Han Z H, He L, Hou Y L, Feng J and Sun J 2009 Intermetallics 17 553
[63] Zhang W, Guo H, Chen M W, Saotome Y, Qin C L and Inoue A 2009 Scr. Mater. 61 744
[64] Zhao Y, Shang B, Zhang B, Tong X, Ke H, Bai H and Wang W H 2022 Science Advances 8 eabn3623
[65] Takeuchi A and Inoue A 2005 Mater. Trans. 46 2817
[66] Altounian Z, Batalla E, Strom-Olsen J O and Walter J L 1987 J. Appl. Phys. 61 149
[67] Wang Z Y, Huang L, Yue G Q, Shen B, Dong F, Zhang R J, Zheng Y X, Wang S Y, Wang C Z, Kramer J, Ho K M and Chen L Y 2016 J. Phys. Chem. B 120 9223
[68] Haynes W M 2016 CRC Handbook of Chemistry and Physics, 97th edn., Vol. 9 (Boca Raton: CRC press) pp. 73-77
[1] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[2] Universal basis underlying temperature, pressure and size induced dynamical evolution in metallic glass-forming liquids
H P Zhang(张华平), B B Fan(范蓓蓓), J Q Wu(吴佳琦), and M Z Li(李茂枝). Chin. Phys. B, 2024, 33(1): 016101.
[3] A group of ductile metallic glasses prepared by modifying local structure of icosahedral quasicrystals
Qi Qiao(乔琪), Ji Wang(王吉), Zhengqing Cai(蔡正清), Shidong Feng(冯士东), Zhenqiang Song(宋贞强), Benke Huo(霍本科), Zijing Li(李子敬), and Li-Min Wang(王利民). Chin. Phys. B, 2023, 32(11): 116401.
[4] Structural origin for composition-dependent nearest atomic distance in Cu-Zr metallic glass
Chi Zhang(张驰), Hua-Shan Liu(刘华山), and Hai-Long Peng(彭海龙). Chin. Phys. B, 2023, 32(11): 116101.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[8] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[9] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[10] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[11] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[12] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[13] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[14] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[15] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
No Suggested Reading articles found!