Effect of overheating-induced minor addition on Zr-based metallic glasses
Fu Yang(杨福)1,2, Zhenxing Bo(薄振兴)1,2, Yao Huang(黄瑶)1,2, Yutian Wang(王雨田)1,2, Boyang Sun(孙博阳)1,2, Zhen Lu(鲁振)1, Baoan Sun(孙保安)1,4, Yanhui Liu(柳延辉)1,2,3,†, Weihua Wang(汪卫华)1,3,4, and Mingxiang Pan(潘明祥)1,3,4,‡
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract Melt treatment is well known to have an important influence on the properties of metallic glasses (MGs). However, for the MGs quenched from different melt temperatures with a quartz tube, the underlying physical origin responsible for the variation of properties remains poorly understood. In the present work, we systematically studied the influence of melt treatment on the thermal properties of a Zr50Cu36Al14 glass-forming alloy and unveiled the microscopic origins. Specifically, we quenched the melt at different temperatures ranging from 1.1Tl to 1.5Tl (Tl is the liquidus temperature) to obtain melt-spun MG ribbons and investigated the variation of thermal properties of the MGs upon heating. We found that glass transition temperature, Tg, increases by as much as 36 K, and the supercooled liquid region disappears in the curve of differential scanning calorimetry when the melt is quenched at a high temperature up to 1.5Tl. The careful chemical analyses indicate that the change in glass transition behavior originates from the incorporation of oxygen and silicon in the molten alloys. The incorporated oxygen and silicon can both enhance the interactions between atoms, which renders the cooperative rearrangements of atoms difficult, and thus enhances the kinetic stability of the MGs.
Fund: The work was financially supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0703600, 2021YFA0716302, and 2021YFA0718703), the National Natural Science Foundation of China (Grant Nos. 51825104 and 52192602), and China Postdoctoral Science Foundation (Grant No. 2022T150691).
Corresponding Authors:
Yanhui Liu, Mingxiang Pan
E-mail: yanhui.liu@iphy.ac.cn;panmx@iphy.ac.cn
Cite this article:
Fu Yang(杨福), Zhenxing Bo(薄振兴), Yao Huang(黄瑶), Yutian Wang(王雨田), Boyang Sun(孙博阳), Zhen Lu(鲁振), Baoan Sun(孙保安), Yanhui Liu(柳延辉), Weihua Wang(汪卫华), and Mingxiang Pan(潘明祥) Effect of overheating-induced minor addition on Zr-based metallic glasses 2024 Chin. Phys. B 33 036401
[1] Dyre J C 2006 Rev. Mod. Phys.78 953 [2] Inoue A, Shen B, Koshiba H, Kato H and Yavari A R 2003 Nat. Mater.2 661 [3] Wang W H, Dong C and Shek C H 2004 Materials Science and Engineering: R: Reports44 45 [4] Wang J, Li R, Hua N and Zhang T 2011 J. Mater. Res.26 2072 [5] Wang W H 2012 Prog. Mater. Sci.57 487 [6] Huo J, Li K, Zang B, Gao M, Wang L M, Sun B, Li M, Song L, Wang J Q and Wang W H 2022 Chin. Phys. Lett.39 046401 [7] Telford M 2004 Materials Today7 36 [8] Yi J, Xia X X, Zhao D Q, Pan M X, Bai H Y and Wang W H 2010 Advanced Engineering Materials12 1117 [9] Tian L, Cheng Y Q, Shan Z W, Li J, Wang C C, Han X D, Sun J and Ma E 2012 Nat. Commun.3 609 [10] Duan G, Wiest A, Lind M L, Li J, Rhim W K and Johnson W L 2007 Adv. Mater.19 4272 [11] Kumar G, Tang H X and Schroers J 2009 Nature457 868 [12] Schroers J 2010 Adv. Mater.22 1566 [13] Lu T, Liu S L, Sun Y H, Wang W H and Pan M X 2022 Chin. Phys. Lett.39 036401 [14] Fan C and Inoue A 1999 Appl. Phys. Lett.75 3644 [15] Mukherjee S, Zhou Z, Schroers J, Johnson W L and Rhim W K 2004 Appl. Phys. Lett.84 5010 [16] Lee J K, Bae D H, Kim W T and Kim D H 2004 Materials Science and Engineering: A375-377 332 [17] Fan C, Chen D, Liaw P K, Choo H, Benmore C, Siewenie J, Chen G L, Xie J X and Liu C T 2008 Appl. Phys. Lett.93 261905 [18] Zhu Z W, Zhang H F, Wang H, Ding B Z and Hu Z Q 2008 J. Mater. Res.23 2714 [19] Mu J A, Fu H M, Zhu Z W, Wang A M, Li H, Hu Z Q and Zhang H F 2010 Advanced Engineering Materials12 1127 [20] Zhao Y, Kou S, Suo H, Wang R and Ding Y 2010 Materials & Design31 1029 [21] Mao J, Zhang H F, Fu H M, Wang A M, Li H and Hu Z Q 2010 J. Alloys Compd.496 595 [22] Fan C, Liu C T, Chen G, Chen G, Chen D, Yang X, Liaw P K and Yan H G 2013 Intermetallics38 19 [23] Cui X, Zhang Q D, Li X Y and Zu F Q 2016 Intermetallics73 79 [24] Cui X, Zhang Q D, Li X Y and Zu F Q 2016 J. Non-Cryst. Solids452 336 [25] Wang X H, Inoue A, Kong F L, Zhu S L, Stoica M, Kaban I, Chang C T, Shalaan E, Al-Marzouki F and Eckert J 2016 Acta Mater.116 370 [26] Wang X H, Inoue A, Zhao J F, Kong F L, Zhu S L, Kaban I, Stoica M, Oswald S, Fan C, Shalaan E, Al-Marzouki F, Eckert J, Yin F X and Li Q 2018 J. Alloys Compd.739 1104 [27] Kumar G, Ohkubo T and Hono K 2009 J. Mater. Res.24 2353 [28] Mao J, Zhang H F, Fu H M, Wang A M, Li H and Hu Z Q 2010 Materials Science and Engineering: A527 981 [29] Cheng Q, Sun Y H, Orava J and Wang W H 2023 Materials Today Physics31 101004 [30] Chen C, Zhao R, Yin B, Chathoth S M, Inoue A, Embs J P, Zhang F, He Y, Li X, Chen Z, Zhang P and Shen B 2023 J. Alloys Compd.967 171691 [31] Mao J, Zhang H F, Fu H M, Wang A M, Li H and Hu Z Q 2009 Advanced Engineering Materials11 986 [32] Mu J, Fu H, Zhu Z, Wang A, Li H, Hu Z and Zhang H 2009 Advanced Engineering Materials11 530 [33] Zhu Z, Zhang H, Wang H, Ding B, Hu Z Q and Huang H 2009 J. Mater. Res.24 3108 [34] Liu J, Guo J, Hu X, Guo S, Meng W and Xiao Q 2013 J. Alloys Compd.581 671 [35] Jin Z, Cao F, Cao G, Zhang C, Qiu Z, Zhang L, Shen H, Jiang S, Huang Y, Ma M, Jürgen E and Sun J 2023 Journal of Materials Research and Technology22 3010 [36] Ouyang D L, Yan Y H, Chen S S, Huang D, Wang Z R, Cui X, Hu Q and Guo S 2023 J. Non-Cryst. Solids603 122118 [37] Luborsky F E and Liebermann H H 1981 Materials Science and Engineering49 257 [38] Manov V P, Popel S I, Buler P I, Manukhin A B and Komlev D G 1991 Materials Science and Engineering: A133 535 [39] Zhang S, Zhu W, Han C, Li W, Wang T, Chen C, Wei R, Wu S and Li F 2022 Intermetallics151 107741 [40] Gao H, Li Z, Zhou S, Zhang G and Cui N 2019 Progress in Natural Science: Materials International29 556 [41] Hu Y, Li J, Lin T and Zhou Y 2009 J. Mater. Res.24 3590 [42] Zhou X, Kou H, Wang J, Li J and Zhou L 2012 Intermetallics28 45 [43] Mohammadi Rahvard M, Tamizifar M and Boutorabi S M A 2018 J. Non-Cryst. Solids491 114 [44] Zhang X, Xu K, Yang X, Cui X, Bian B, Zhang X, Hou S and Chen J 2021 AIP Advances11 075105 [45] Du S, Li C, Pang S, Leng J and Geng H 2013 Materials & Design47 358 [46] Zhang X, Guo J, Liu H, Song Y, Xu L and Liu J 2016 Materials & Design100 217 [47] Zhu P, Li X, Zhang Q, Liu B, Ma Y and Zu F 2017 J. Non-Cryst. Solids471 175 [48] Cui X, Li J J, Qiao J C, Guo J, Zu F Q, Zhang X F, Meng X J, Bian B C and Zhang Q D 2020 J. Non-Cryst. Solids543 120100 [49] Mo J, Shen B, Wan Y, Zhou Z, Sun B and Liang X 2020 J. Non-Cryst. Solids528 119742 [50] Ashby M and Greer A 2006 Scr. Mater.54 321 [51] Wang W H 2007 Prog. Mater. Sci.52 540 [52] Angell C A 1995 Science267 1924 [53] Debenedetti P G and Stillinger F H 2001 Nature410 259 [54] Xue R J, Zhao L Z, Shi C L, Ma T, Xi X K, Gao M, Zhu P W, Wen P, Yu X H, Jin C Q, Pan M X, Wang W H and Bai H Y 2016 Appl. Phys. Lett.109 221904 [55] Zhang S, Wang W H and Guan P F 2021 Chin. Phys. Lett.38 016802 [56] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A and Wang W H 2013 Appl. Phys. Lett.102 101903 [57] Kissinger H E 1956 Journal of Research of the National Bureau of Standards57 217 [58] Williams G and Watts D C 1970 Transactions of the Faraday Society66 80 [59] Williams G, Watts D C, Dev S B and North A M 1971 Transactions of the Faraday Society67 1323 [60] Stevenson J D, Schmalian J and Wolynes P G 2006 Nat. Phys.2 268 [61] Ligero R A, Vazquez J, Villares P and Jimenezgaray R 1989 Mater. Lett.8 6 [62] Han Z H, He L, Hou Y L, Feng J and Sun J 2009 Intermetallics17 553 [63] Zhang W, Guo H, Chen M W, Saotome Y, Qin C L and Inoue A 2009 Scr. Mater.61 744 [64] Zhao Y, Shang B, Zhang B, Tong X, Ke H, Bai H and Wang W H 2022 Science Advances8 eabn3623 [65] Takeuchi A and Inoue A 2005 Mater. Trans.46 2817 [66] Altounian Z, Batalla E, Strom-Olsen J O and Walter J L 1987 J. Appl. Phys.61 149 [67] Wang Z Y, Huang L, Yue G Q, Shen B, Dong F, Zhang R J, Zheng Y X, Wang S Y, Wang C Z, Kramer J, Ho K M and Chen L Y 2016 J. Phys. Chem. B120 9223 [68] Haynes W M 2016 CRC Handbook of Chemistry and Physics, 97th edn., Vol. 9 (Boca Raton: CRC press) pp. 73-77
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.