|
|
Effect of overheating-induced minor addition on Zr-based metallic glasses |
Fu Yang(杨福)1,2, Zhenxing Bo(薄振兴)1,2, Yao Huang(黄瑶)1,2, Yutian Wang(王雨田)1,2, Boyang Sun(孙博阳)1,2, Zhen Lu(鲁振)1, Baoan Sun(孙保安)1,4, Yanhui Liu(柳延辉)1,2,3,†, Weihua Wang(汪卫华)1,3,4, and Mingxiang Pan(潘明祥)1,3,4,‡ |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Melt treatment is well known to have an important influence on the properties of metallic glasses (MGs). However, for the MGs quenched from different melt temperatures with a quartz tube, the underlying physical origin responsible for the variation of properties remains poorly understood. In the present work, we systematically studied the influence of melt treatment on the thermal properties of a Zr50Cu36Al14 glass-forming alloy and unveiled the microscopic origins. Specifically, we quenched the melt at different temperatures ranging from 1.1Tl to 1.5Tl (Tl is the liquidus temperature) to obtain melt-spun MG ribbons and investigated the variation of thermal properties of the MGs upon heating. We found that glass transition temperature, Tg, increases by as much as 36 K, and the supercooled liquid region disappears in the curve of differential scanning calorimetry when the melt is quenched at a high temperature up to 1.5Tl. The careful chemical analyses indicate that the change in glass transition behavior originates from the incorporation of oxygen and silicon in the molten alloys. The incorporated oxygen and silicon can both enhance the interactions between atoms, which renders the cooperative rearrangements of atoms difficult, and thus enhances the kinetic stability of the MGs.
|
Received: 30 November 2023
Revised: 20 December 2023
Accepted manuscript online: 22 December 2023
|
PACS:
|
64.70.pe
|
(Metallic glasses)
|
|
63.50.Lm
|
(Glasses and amorphous solids)
|
|
65.60.+a
|
(Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)
|
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
Fund: The work was financially supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0703600, 2021YFA0716302, and 2021YFA0718703), the National Natural Science Foundation of China (Grant Nos. 51825104 and 52192602), and China Postdoctoral Science Foundation (Grant No. 2022T150691). |
Corresponding Authors:
Yanhui Liu, Mingxiang Pan
E-mail: yanhui.liu@iphy.ac.cn;panmx@iphy.ac.cn
|
Cite this article:
Fu Yang(杨福), Zhenxing Bo(薄振兴), Yao Huang(黄瑶), Yutian Wang(王雨田), Boyang Sun(孙博阳), Zhen Lu(鲁振), Baoan Sun(孙保安), Yanhui Liu(柳延辉), Weihua Wang(汪卫华), and Mingxiang Pan(潘明祥) Effect of overheating-induced minor addition on Zr-based metallic glasses 2024 Chin. Phys. B 33 036401
|
[1] Dyre J C 2006 Rev. Mod. Phys. 78 953 [2] Inoue A, Shen B, Koshiba H, Kato H and Yavari A R 2003 Nat. Mater. 2 661 [3] Wang W H, Dong C and Shek C H 2004 Materials Science and Engineering: R: Reports 44 45 [4] Wang J, Li R, Hua N and Zhang T 2011 J. Mater. Res. 26 2072 [5] Wang W H 2012 Prog. Mater. Sci. 57 487 [6] Huo J, Li K, Zang B, Gao M, Wang L M, Sun B, Li M, Song L, Wang J Q and Wang W H 2022 Chin. Phys. Lett. 39 046401 [7] Telford M 2004 Materials Today 7 36 [8] Yi J, Xia X X, Zhao D Q, Pan M X, Bai H Y and Wang W H 2010 Advanced Engineering Materials 12 1117 [9] Tian L, Cheng Y Q, Shan Z W, Li J, Wang C C, Han X D, Sun J and Ma E 2012 Nat. Commun. 3 609 [10] Duan G, Wiest A, Lind M L, Li J, Rhim W K and Johnson W L 2007 Adv. Mater. 19 4272 [11] Kumar G, Tang H X and Schroers J 2009 Nature 457 868 [12] Schroers J 2010 Adv. Mater. 22 1566 [13] Lu T, Liu S L, Sun Y H, Wang W H and Pan M X 2022 Chin. Phys. Lett. 39 036401 [14] Fan C and Inoue A 1999 Appl. Phys. Lett. 75 3644 [15] Mukherjee S, Zhou Z, Schroers J, Johnson W L and Rhim W K 2004 Appl. Phys. Lett. 84 5010 [16] Lee J K, Bae D H, Kim W T and Kim D H 2004 Materials Science and Engineering: A 375-377 332 [17] Fan C, Chen D, Liaw P K, Choo H, Benmore C, Siewenie J, Chen G L, Xie J X and Liu C T 2008 Appl. Phys. Lett. 93 261905 [18] Zhu Z W, Zhang H F, Wang H, Ding B Z and Hu Z Q 2008 J. Mater. Res. 23 2714 [19] Mu J A, Fu H M, Zhu Z W, Wang A M, Li H, Hu Z Q and Zhang H F 2010 Advanced Engineering Materials 12 1127 [20] Zhao Y, Kou S, Suo H, Wang R and Ding Y 2010 Materials & Design 31 1029 [21] Mao J, Zhang H F, Fu H M, Wang A M, Li H and Hu Z Q 2010 J. Alloys Compd. 496 595 [22] Fan C, Liu C T, Chen G, Chen G, Chen D, Yang X, Liaw P K and Yan H G 2013 Intermetallics 38 19 [23] Cui X, Zhang Q D, Li X Y and Zu F Q 2016 Intermetallics 73 79 [24] Cui X, Zhang Q D, Li X Y and Zu F Q 2016 J. Non-Cryst. Solids 452 336 [25] Wang X H, Inoue A, Kong F L, Zhu S L, Stoica M, Kaban I, Chang C T, Shalaan E, Al-Marzouki F and Eckert J 2016 Acta Mater. 116 370 [26] Wang X H, Inoue A, Zhao J F, Kong F L, Zhu S L, Kaban I, Stoica M, Oswald S, Fan C, Shalaan E, Al-Marzouki F, Eckert J, Yin F X and Li Q 2018 J. Alloys Compd. 739 1104 [27] Kumar G, Ohkubo T and Hono K 2009 J. Mater. Res. 24 2353 [28] Mao J, Zhang H F, Fu H M, Wang A M, Li H and Hu Z Q 2010 Materials Science and Engineering: A 527 981 [29] Cheng Q, Sun Y H, Orava J and Wang W H 2023 Materials Today Physics 31 101004 [30] Chen C, Zhao R, Yin B, Chathoth S M, Inoue A, Embs J P, Zhang F, He Y, Li X, Chen Z, Zhang P and Shen B 2023 J. Alloys Compd. 967 171691 [31] Mao J, Zhang H F, Fu H M, Wang A M, Li H and Hu Z Q 2009 Advanced Engineering Materials 11 986 [32] Mu J, Fu H, Zhu Z, Wang A, Li H, Hu Z and Zhang H 2009 Advanced Engineering Materials 11 530 [33] Zhu Z, Zhang H, Wang H, Ding B, Hu Z Q and Huang H 2009 J. Mater. Res. 24 3108 [34] Liu J, Guo J, Hu X, Guo S, Meng W and Xiao Q 2013 J. Alloys Compd. 581 671 [35] Jin Z, Cao F, Cao G, Zhang C, Qiu Z, Zhang L, Shen H, Jiang S, Huang Y, Ma M, Jürgen E and Sun J 2023 Journal of Materials Research and Technology 22 3010 [36] Ouyang D L, Yan Y H, Chen S S, Huang D, Wang Z R, Cui X, Hu Q and Guo S 2023 J. Non-Cryst. Solids 603 122118 [37] Luborsky F E and Liebermann H H 1981 Materials Science and Engineering 49 257 [38] Manov V P, Popel S I, Buler P I, Manukhin A B and Komlev D G 1991 Materials Science and Engineering: A 133 535 [39] Zhang S, Zhu W, Han C, Li W, Wang T, Chen C, Wei R, Wu S and Li F 2022 Intermetallics 151 107741 [40] Gao H, Li Z, Zhou S, Zhang G and Cui N 2019 Progress in Natural Science: Materials International 29 556 [41] Hu Y, Li J, Lin T and Zhou Y 2009 J. Mater. Res. 24 3590 [42] Zhou X, Kou H, Wang J, Li J and Zhou L 2012 Intermetallics 28 45 [43] Mohammadi Rahvard M, Tamizifar M and Boutorabi S M A 2018 J. Non-Cryst. Solids 491 114 [44] Zhang X, Xu K, Yang X, Cui X, Bian B, Zhang X, Hou S and Chen J 2021 AIP Advances 11 075105 [45] Du S, Li C, Pang S, Leng J and Geng H 2013 Materials & Design 47 358 [46] Zhang X, Guo J, Liu H, Song Y, Xu L and Liu J 2016 Materials & Design 100 217 [47] Zhu P, Li X, Zhang Q, Liu B, Ma Y and Zu F 2017 J. Non-Cryst. Solids 471 175 [48] Cui X, Li J J, Qiao J C, Guo J, Zu F Q, Zhang X F, Meng X J, Bian B C and Zhang Q D 2020 J. Non-Cryst. Solids 543 120100 [49] Mo J, Shen B, Wan Y, Zhou Z, Sun B and Liang X 2020 J. Non-Cryst. Solids 528 119742 [50] Ashby M and Greer A 2006 Scr. Mater. 54 321 [51] Wang W H 2007 Prog. Mater. Sci. 52 540 [52] Angell C A 1995 Science 267 1924 [53] Debenedetti P G and Stillinger F H 2001 Nature 410 259 [54] Xue R J, Zhao L Z, Shi C L, Ma T, Xi X K, Gao M, Zhu P W, Wen P, Yu X H, Jin C Q, Pan M X, Wang W H and Bai H Y 2016 Appl. Phys. Lett. 109 221904 [55] Zhang S, Wang W H and Guan P F 2021 Chin. Phys. Lett. 38 016802 [56] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A and Wang W H 2013 Appl. Phys. Lett. 102 101903 [57] Kissinger H E 1956 Journal of Research of the National Bureau of Standards 57 217 [58] Williams G and Watts D C 1970 Transactions of the Faraday Society 66 80 [59] Williams G, Watts D C, Dev S B and North A M 1971 Transactions of the Faraday Society 67 1323 [60] Stevenson J D, Schmalian J and Wolynes P G 2006 Nat. Phys. 2 268 [61] Ligero R A, Vazquez J, Villares P and Jimenezgaray R 1989 Mater. Lett. 8 6 [62] Han Z H, He L, Hou Y L, Feng J and Sun J 2009 Intermetallics 17 553 [63] Zhang W, Guo H, Chen M W, Saotome Y, Qin C L and Inoue A 2009 Scr. Mater. 61 744 [64] Zhao Y, Shang B, Zhang B, Tong X, Ke H, Bai H and Wang W H 2022 Science Advances 8 eabn3623 [65] Takeuchi A and Inoue A 2005 Mater. Trans. 46 2817 [66] Altounian Z, Batalla E, Strom-Olsen J O and Walter J L 1987 J. Appl. Phys. 61 149 [67] Wang Z Y, Huang L, Yue G Q, Shen B, Dong F, Zhang R J, Zheng Y X, Wang S Y, Wang C Z, Kramer J, Ho K M and Chen L Y 2016 J. Phys. Chem. B 120 9223 [68] Haynes W M 2016 CRC Handbook of Chemistry and Physics, 97th edn., Vol. 9 (Boca Raton: CRC press) pp. 73-77 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|