Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017204    DOI: 10.1088/1674-1056/acfe00
Special Issue: SPECIAL TOPIC — States and new effects in nonequilibrium
TOPICAL REVIEW—States and new effects in nonequilibrium Prev   Next  

Photophysics of metal-organic frameworks: A brief overview

Qingshuo Liu(刘晴硕)1, Junhong Yu(余俊宏)2,†, and Jianbo Hu(胡建波)1,2,‡
1 State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China;
2 Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  Metal-organic frameworks (MOFs), which are self-assembled porous coordination materials, have garnered considerable attention in the fields of optoelectronics, photovoltaic, photochemistry, and photocatalysis due to their diverse structures and excellent tunability. However, the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark. To enhance the performance of MOF materials, it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport, recombination, interaction, and transfer. By utilizing femtosecond laser pulses to excite MOFs, time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes. This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs. Accordingly, this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.
Keywords:  metal-organic framework (MOF)      ultrafast spectroscopy      photophysics      carrier dynamics  
Received:  16 August 2023      Revised:  26 September 2023      Accepted manuscript online:  28 September 2023
PACS:  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  71.35.-y (Excitons and related phenomena)  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018001), the National Natural Science Foundation of China (Grant Nos. 11872058 and 21802036), the Project of State Key Laboratory of Environment-friendly Energy Materials, and Southwest University of Science and Technology (Grant No. 21fksy07).
Corresponding Authors:  Junhong Yu, Jianbo Hu     E-mail:  yujunhong@caep.cn;jianbo.hu@caep.cn

Cite this article: 

Qingshuo Liu(刘晴硕), Junhong Yu(余俊宏), and Jianbo Hu(胡建波) Photophysics of metal-organic frameworks: A brief overview 2024 Chin. Phys. B 33 017204

[1] Chen L, Liu D, Peng J, Du Q and He H 2020 Coord. Chem. Rev. 404 213113
[2] Pattengale B, Ostresh S, Schmuttenmaer C A and Neu J 2022 Chem. Rev. 122 132
[3] Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O'Keeffe M and Yaghi O M 2010 Acc. Chem. Res. 43 58
[4] Xiao J, Shang Q, Xiong Y, Zhang Q, Luo Y, Yu S and Jiang H 2016 Angew. Chem. Int. Ed. 55 9389
[5] Tsivadze A Y, Aksyutin O E, Ishkov A G, Knyazeva M K, Solovtsova O V, Men'shchikov I E, Fomkin A A, Shkolin A V, Khozina E V and Grachev V A 2019 Russ. Chem. Rev. 88 925
[6] Kovalenko K A, Potapov A S and Fedin V P 2022 Russ. Chem. Rev. 91 RCR5026
[7] Wu Y and Weckhuysen B M 2021 Angew. Chem. Int. Ed. 60 18930
[8] Suresh K and Matzger A J 2019 Angew. Chem. Int. Ed. 58 16790
[9] Ni M, Gong M, Li X, Gu J, Li B and Chen Y 2021 Appl. Mater. Today 23 100982
[10] Zhao Y, Wang W, Li X, Lu H, Shi Z, Wang Y, Zhang C, Hu J and Shan G 2020 ACS Photonics 7 2440
[11] Zhang Q, Jiang X, Zhang M, Jin X, Zhang H and Zheng Z 2020 Nanoscale 12 4586
[12] Yang C, Dong R, Wang M, Petkov P S, Zhang Z, Wang M, Han P, Ballabio M, Bräuninger S A, Liao Z, Zhang J, Schwotzer F, Zschech E, Klauss H H, Cánovas E, Kaskel S, Bonn M, Zhou S, Heine T and Feng X 2019 Nat. Commun. 10 3260
[13] Yang S, Hu W, Nyakuchena J, Fiankor C, Liu C, Kinigstein E D, Zhang J, Zhang X and Huang J 2020 Chem. Commun. 56 13971
[14] Xiao Y, Liu J, Leng J, Yin Z, Yin Y, Zhang F, Sun C and Jin S 2022 ACS Energy Lett. 7 2323
[15] Li X, Gong C, Gurzadyan G G, Gelin M F, Liu J and Sun L 2018 J. Phys. Chem. C 122 50
[16] Zhou Y, Yang Q, Zhang D, Gan N, Li Q and Cuan J 2018 Sens. Actuators B Chem. 262 137
[17] Jia P, Yang K, Hou J, Cao Y, Wang X and Wang L 2021 J. Hazard. Mater. 408 124469
[18] Nasalevich M A, Hendon C H, Santaclara J G, Svane K, van der Linden B, Veber S L, Fedin M V, Houtepen A J, van der Veen M A, Kapteijn F, Walsh A and Gascon J 2016 Sci. Rep. 6 23676
[19] Liang Y, Yuan X, Zeng Z, Zhu B and Gu Y 2022 Mater. Today Phys. 29 100920
[20] Liang Y, Hu W, Yuan X, Zeng Z, Zhu B and Gu Y 2022 Adv. Opt. Mater. 10 2200779
[21] Wang T, Huang W, Sun T, Zhang W, Tang W, Yan L, Si J and Ma H 2020 ACS Appl. Mater. Interfaces 12 46565
[22] Xiao J D and Jiang H L 2019 Acc. Chem. Res. 52 356
[23] Spies J A, Neu J, Tayvah U T, Capobianco M D, Pattengale B, Ostresh S and Schmuttenmaer C A 2020 J. Phys. Chem. C 124 22335
[24] Flach J T, Wang J, Arnold M S and Zanni M T 2020 J. Phys. Chem. Lett. 11 6016
[25] Zheng M, Li Y, Wei Y, Chen L, Zhou X and Liu S 2022 J. Phys. Chem. Lett. 13 2507
[26] Knittel V, Fischer M P, De Roo T, Mecking S, Leitenstorfer A and Brida D 2015 ACS Nano 9 894
[27] Szczodrowski K, Behrendt M, Barzowska J, Górecka N, Majewska N, Leśniewski T, Lapiński M and Mahlik S 2023 Dalton Trans. 52 4329
[28] Erkens M, Levshov D, Wenseleers W, Li H, Flavel B S, Fagan J A, Popov V N, Avramenko M, Forel S, Flahaut E and Cambré S 2022 ACS Nano 16 16038
[29] Ponseca C S, Chábera P, Uhlig J, Persson P and Sundström V 2017 Chem. Rev. 117 10940
[30] Berera R, Van Grondelle R and Kennis J T M 2009 Photosyn. Res. 101 105
[31] Ruckebusch C, Sliwa M, Pernot P, de Juan A and Tauler R 2012 J. Photochem. Photobiol. C:Photochem. Rev. 13 1
[32] Gutiérrez-Arzaluz L, Nadinov I, Healing G, Czaban-Jóźwiak J, Jia J, Huang Z, Zhao Y, Shekhah O, Schanze K S, Eddaoudi M and Mohammed O F 2021 J. Phys. Chem. B 125 13298
[33] Wu S, Ren D, Zhou K, Xia H L, Liu X Y, Wang X and Li J 2021 J. Am. Chem. Soc. 143 10547
[34] Alomar S A, Gutiérrez-Arzaluz L, Nadinov I, He R, Wang X, Wang J X, Jia J, Shekhah O, Eddaoudi M, Alshareef H N, Schanze K S and Mohammed O F 2023 J. Phys. Chem. B 127 1819
[35] Di Nunzio M R, Caballero-Mancebo E, Cohen B and Douhal A 2020 J. Photochem. Photobiol. C:Photochem. Rev. 44 100355
[36] Cerasale D J, Ward D C and Easun T L 2021 Nat. Rev. Chem. 6 9
[37] Nagatomi H, Yanai N, Yamada T, Shiraishi K and Kimizuka N 2018 Chem. Eur. J. 24 1806
[38] Li Q, Zaczek A J, Korter T M, Zeitler J A and Ruggiero M T 2018 Chem. Commun. 54 5776
[39] Pattengale B, Neu J, Tada A, Hu G, Karpovich C J and Brudvig G W 2021 Polyhedron 203 115182
[40] Pattengale B, Neu J, Ostresh S, Hu G, Spies J A, Okabe R, Brudvig G W and Schmuttenmaer C A 2019 J. Am. Chem. Soc. 141 9793
[41] Nyakuchena J, Ostresh S, Streater D, Pattengale B, Neu J, Fiankor C, Hu W, Kinigstein E D, Zhang J, Zhang X, Schmuttenmaer C A and Huang J 2020 J. Am. Chem. Soc. 142 21050
[42] Yan Z H, Ma B, Li S R, Liu J, Chen R, Du M H, Jin S, Zhuang G L, Long L S, Kong X J and Zheng L S 2019 Sci. Bull. 64 976
[43] Chen X, Peng C, Dan W, Yu L, Wu Y and Fei H 2022 Nat. Commun. 13 4592
[44] Wang Y, Zhang W, Li D, Guo J, Yu Y, Ding K, Duan W, Li X, Liu H, Su P, Liu B and Li J 2021 Adv. Sci. 8 2004456
[45] Sasitharan K, Bossanyi D G, Vaenas N, Parnell A J, Clark J, Iraqi A, Lidzey D G and Foster J A 2020 J. Mater. Chem. A 8 6067
[46] Yu J, Han Y, Wang L, Liu Y, Zhang H, Chen X, Liu X, Wang Z and Hu J 2023 Ultrafast Sci. 3 0030
[47] Gu C, Zhang H, You P, Zhang Q, Luo G, Shen Q, Wang Z and Hu J 2019 Nano Lett. 19 9095
[48] Sun Z, Khurshid A, Sohail M, Qiu W, Cao D and Su S J 2021 Nanomaterials 11 2761
[49] Wang M, Liu J, Guo C, Gao X, Gong C, Wang Y, Liu B, Li X, Gurzadyan G G and Sun L 2018 J. Mater. Chem. A 6 4768
[50] Zeng L, Wang Z, Wang Y, Wang J, Guo Y, Hu H, He X, Wang C and Lin W 2020 J. Am. Chem. Soc. 142 75
[51] Liu Y, Liu C H, Debnath T, Wang Y, Pohl D, Besteiro L V, Meira D M, Huang S, Yang F, Rellinghaus B, Chaker M, Perepichka D F and Ma D 2023 Nat. Commun. 14 541
[52] Santaclara J G, Kapteijn F, Gascon J and van der Veen M A 2017 CrystEngComm 19 4118
[53] Ma X, Wang L, Zhang Q and Jiang H 2019 Angew. Chem. Int. Ed. 58 12175
[54] Wang L, Zhang Z, Han Q, Liu Y, Zhong J, Chen J, Huang J, She H and Wang Q 2022 Appl. Surf. Sci. 584 152645
[55] Li R, Chen T, Lu J, Hu H, Zheng H, Zhu P and Pan X 2023 Water Res. 229 119366
[56] An Y, Liu Y, Bian H, Wang Z, Wang P, Zheng Z, Dai Y, Whangbo M H and Huang B 2019 Sci. Bull. 64 1502
[57] Zhang Y, Hu W, Wang D, Reinhart B J and Huang J 2021 J. Mater. Chem. A 9 6180
[58] Li W Q, Wang Y X, Li Y M, He C S, Lai B, Chen F, Wang H J, Zhou X G and Mu Y 2021 J. Clean. Prod. 318 128513
[59] Flanders N C, Kirschner M S, Kim P, Fauvell T J, Evans A M, Helweh W, Spencer A P, Schaller R D, Dichtel W R and Chen L X 2020 J. Am. Chem. Soc. 142 14957
[60] Gu C, Zhang H, Yu J, Shen Q, Luo G, Chen X, Xue P, Wang Z and Hu J 2021 Nano Lett. 21 1102
[61] Liang C, Cheng L, Zhang S, Yang S, Liu W, Xie J, Li M D, Chai Z, Wang Y and Wang S 2022 J. Am. Chem. Soc. 144 2189
[62] Ye Y, Huang C, Yang J, Li Y, Zhuang Q and Gu J 2019 Microporous Mesoporous Mater. 284 36
[63] Zhang Y, Yuan S, Day G, Wang X, Yang X and Zhou H C 2018 Coord. Chem. Rev. 354 28
[64] Zhou Z, Li X, Tang Y, Zhang C C, Fu H, Wu N, Ma L, Gao J and Wang Q 2018 Chem. Eng. J. 351 364
[65] Gao X, Sun G, Wang X, Lin X, Wang S and Liu Y 2021 Sens. Actuators B:Chem. 331 129448
[66] Monguzzi A, Ballabio M, Yanai N, Kimizuka N, Fazzi D, Campione M and Meinardi F 2018 Nano Lett. 18 528
[67] Rajasree S S, Yu J, Fajardo-Rojas F, Fry H C, Anderson R, Li X, Xu W, Duan J, Goswami S, Maindan K, Gómez-Gualdrón D A and Deria P 2023 J. Am. Chem. Soc. 145 17678
[68] Meinardi F, Ballabio M, Yanai N, Kimizuka N, Bianchi A, Mauri M, Simonutti R, Ronchi A, Campione M and Monguzzi A 2019 Nano Lett. 19 2169
[69] Ha D G, Wan R, Kim C A, Lin T A, Yang L, Van Voorhis T, Baldo M A and Dincǎ M 2022 Nat. Mater. 21 1275
[1] Progress and realization platforms of dynamic topological photonics
Qiu-Chen Yan(闫秋辰), Rui Ma(马睿), Xiao-Yong Hu(胡小永), and Qi-Huang Gong(龚旗煌). Chin. Phys. B, 2024, 33(1): 010301.
[2] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[3] Thickness-dependent exciton relaxation dynamics of few-layer rhenium diselenide
Chang-Fu Huo(霍唱福), Tiantian Yun(云田田), Xiao-Qing Yan(鄢小卿), Zewen Liu(刘泽文), Xin Zhao(赵欣), Wenxiong Xu(许文雄), Qiannan Cui(崔乾楠), Zhi-Bo Liu(刘智波), and Jian-Guo Tian(田建国). Chin. Phys. B, 2023, 32(6): 067203.
[4] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[5] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[6] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[7] Attosecond spectroscopy for filming the ultrafast movies of atoms, molecules and solids
Lixin He(何立新), Xiaosong Zhu(祝晓松), Wei Cao(曹伟), Pengfei Lan(兰鹏飞), and Peixiang Lu(陆培祥). Chin. Phys. B, 2022, 31(12): 123301.
[8] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
[9] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[10] Steady and transient behavior of perylene under high pressure
Ting-Ting Wang(王亭亭), Yu Zhang(张宇), Hong-Yu Tu(屠宏宇), Lu Han(韩露), Ji-Chao Cheng(程基超), Xin Wang(王鑫), Fang-Fei Li(李芳菲), Ling-Yun Pan(潘凌云), and Tian Cui(崔田). Chin. Phys. B, 2021, 30(11): 118201.
[11] Ultrafast carrier dynamics of Cu2O thin film induced by two-photon excitation
Jian Liu(刘建), Jing Li(李敬), Kai-Jun Mu(牧凯军), Xin-Wei Shi(史新伟), Jun-Qiao Wang(王俊俏), Miao Mao(毛淼), Shu Chen(陈述), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(11): 114205.
[12] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[13] Studying the charge carrier properties in CuInS2 films via femtosecond transient absorption and nanosecond transient photocurrents
Mingrui Tan(谭铭瑞), Qinghui Liu(刘庆辉), Ning Sui(隋宁), Zhihui Kang(康智慧), Liquan Zhang(张里荃), Hanzhuang Zhang(张汉壮), Wenquan Wang(王文全), Qiang Zhou(周强), Yinghui Wang(王英惠). Chin. Phys. B, 2019, 28(5): 056106.
[14] Femtosecond laser user facility for application research on ultrafast science
Zhaohua Wang(王兆华), Shaobo Fang(方少波), Hao Teng(滕浩), Hainian Han(韩海年), Xinkui He(贺新奎), Zhiyi Wei(魏志义). Chin. Phys. B, 2018, 27(7): 074204.
[15] Review of ultrafast spectroscopy studies of valley carrier dynamics in two-dimensional semiconducting transition metal dichalcogenides
Dong Sun(孙栋), Jia-Wei Lai(赖佳伟), Jun-Chao Ma(马骏超), Qin-Sheng Wang(王钦生), Jing Liu (刘晶). Chin. Phys. B, 2017, 26(3): 037801.
No Suggested Reading articles found!