Special Issue:
SPECIAL TOPIC — States and new effects in nonequilibrium
|
TOPICAL REVIEW—States and new effects in nonequilibrium |
Prev
Next
|
|
|
Photophysics of metal-organic frameworks: A brief overview |
Qingshuo Liu(刘晴硕)1, Junhong Yu(余俊宏)2,†, and Jianbo Hu(胡建波)1,2,‡ |
1 State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China; 2 Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract Metal-organic frameworks (MOFs), which are self-assembled porous coordination materials, have garnered considerable attention in the fields of optoelectronics, photovoltaic, photochemistry, and photocatalysis due to their diverse structures and excellent tunability. However, the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark. To enhance the performance of MOF materials, it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport, recombination, interaction, and transfer. By utilizing femtosecond laser pulses to excite MOFs, time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes. This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs. Accordingly, this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.
|
Received: 16 August 2023
Revised: 26 September 2023
Accepted manuscript online: 28 September 2023
|
PACS:
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
71.35.-y
|
(Excitons and related phenomena)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018001), the National Natural Science Foundation of China (Grant Nos. 11872058 and 21802036), the Project of State Key Laboratory of Environment-friendly Energy Materials, and Southwest University of Science and Technology (Grant No. 21fksy07). |
Corresponding Authors:
Junhong Yu, Jianbo Hu
E-mail: yujunhong@caep.cn;jianbo.hu@caep.cn
|
Cite this article:
Qingshuo Liu(刘晴硕), Junhong Yu(余俊宏), and Jianbo Hu(胡建波) Photophysics of metal-organic frameworks: A brief overview 2024 Chin. Phys. B 33 017204
|
[1] Chen L, Liu D, Peng J, Du Q and He H 2020 Coord. Chem. Rev. 404 213113 [2] Pattengale B, Ostresh S, Schmuttenmaer C A and Neu J 2022 Chem. Rev. 122 132 [3] Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O'Keeffe M and Yaghi O M 2010 Acc. Chem. Res. 43 58 [4] Xiao J, Shang Q, Xiong Y, Zhang Q, Luo Y, Yu S and Jiang H 2016 Angew. Chem. Int. Ed. 55 9389 [5] Tsivadze A Y, Aksyutin O E, Ishkov A G, Knyazeva M K, Solovtsova O V, Men'shchikov I E, Fomkin A A, Shkolin A V, Khozina E V and Grachev V A 2019 Russ. Chem. Rev. 88 925 [6] Kovalenko K A, Potapov A S and Fedin V P 2022 Russ. Chem. Rev. 91 RCR5026 [7] Wu Y and Weckhuysen B M 2021 Angew. Chem. Int. Ed. 60 18930 [8] Suresh K and Matzger A J 2019 Angew. Chem. Int. Ed. 58 16790 [9] Ni M, Gong M, Li X, Gu J, Li B and Chen Y 2021 Appl. Mater. Today 23 100982 [10] Zhao Y, Wang W, Li X, Lu H, Shi Z, Wang Y, Zhang C, Hu J and Shan G 2020 ACS Photonics 7 2440 [11] Zhang Q, Jiang X, Zhang M, Jin X, Zhang H and Zheng Z 2020 Nanoscale 12 4586 [12] Yang C, Dong R, Wang M, Petkov P S, Zhang Z, Wang M, Han P, Ballabio M, Bräuninger S A, Liao Z, Zhang J, Schwotzer F, Zschech E, Klauss H H, Cánovas E, Kaskel S, Bonn M, Zhou S, Heine T and Feng X 2019 Nat. Commun. 10 3260 [13] Yang S, Hu W, Nyakuchena J, Fiankor C, Liu C, Kinigstein E D, Zhang J, Zhang X and Huang J 2020 Chem. Commun. 56 13971 [14] Xiao Y, Liu J, Leng J, Yin Z, Yin Y, Zhang F, Sun C and Jin S 2022 ACS Energy Lett. 7 2323 [15] Li X, Gong C, Gurzadyan G G, Gelin M F, Liu J and Sun L 2018 J. Phys. Chem. C 122 50 [16] Zhou Y, Yang Q, Zhang D, Gan N, Li Q and Cuan J 2018 Sens. Actuators B Chem. 262 137 [17] Jia P, Yang K, Hou J, Cao Y, Wang X and Wang L 2021 J. Hazard. Mater. 408 124469 [18] Nasalevich M A, Hendon C H, Santaclara J G, Svane K, van der Linden B, Veber S L, Fedin M V, Houtepen A J, van der Veen M A, Kapteijn F, Walsh A and Gascon J 2016 Sci. Rep. 6 23676 [19] Liang Y, Yuan X, Zeng Z, Zhu B and Gu Y 2022 Mater. Today Phys. 29 100920 [20] Liang Y, Hu W, Yuan X, Zeng Z, Zhu B and Gu Y 2022 Adv. Opt. Mater. 10 2200779 [21] Wang T, Huang W, Sun T, Zhang W, Tang W, Yan L, Si J and Ma H 2020 ACS Appl. Mater. Interfaces 12 46565 [22] Xiao J D and Jiang H L 2019 Acc. Chem. Res. 52 356 [23] Spies J A, Neu J, Tayvah U T, Capobianco M D, Pattengale B, Ostresh S and Schmuttenmaer C A 2020 J. Phys. Chem. C 124 22335 [24] Flach J T, Wang J, Arnold M S and Zanni M T 2020 J. Phys. Chem. Lett. 11 6016 [25] Zheng M, Li Y, Wei Y, Chen L, Zhou X and Liu S 2022 J. Phys. Chem. Lett. 13 2507 [26] Knittel V, Fischer M P, De Roo T, Mecking S, Leitenstorfer A and Brida D 2015 ACS Nano 9 894 [27] Szczodrowski K, Behrendt M, Barzowska J, Górecka N, Majewska N, Leśniewski T, Lapiński M and Mahlik S 2023 Dalton Trans. 52 4329 [28] Erkens M, Levshov D, Wenseleers W, Li H, Flavel B S, Fagan J A, Popov V N, Avramenko M, Forel S, Flahaut E and Cambré S 2022 ACS Nano 16 16038 [29] Ponseca C S, Chábera P, Uhlig J, Persson P and Sundström V 2017 Chem. Rev. 117 10940 [30] Berera R, Van Grondelle R and Kennis J T M 2009 Photosyn. Res. 101 105 [31] Ruckebusch C, Sliwa M, Pernot P, de Juan A and Tauler R 2012 J. Photochem. Photobiol. C:Photochem. Rev. 13 1 [32] Gutiérrez-Arzaluz L, Nadinov I, Healing G, Czaban-Jóźwiak J, Jia J, Huang Z, Zhao Y, Shekhah O, Schanze K S, Eddaoudi M and Mohammed O F 2021 J. Phys. Chem. B 125 13298 [33] Wu S, Ren D, Zhou K, Xia H L, Liu X Y, Wang X and Li J 2021 J. Am. Chem. Soc. 143 10547 [34] Alomar S A, Gutiérrez-Arzaluz L, Nadinov I, He R, Wang X, Wang J X, Jia J, Shekhah O, Eddaoudi M, Alshareef H N, Schanze K S and Mohammed O F 2023 J. Phys. Chem. B 127 1819 [35] Di Nunzio M R, Caballero-Mancebo E, Cohen B and Douhal A 2020 J. Photochem. Photobiol. C:Photochem. Rev. 44 100355 [36] Cerasale D J, Ward D C and Easun T L 2021 Nat. Rev. Chem. 6 9 [37] Nagatomi H, Yanai N, Yamada T, Shiraishi K and Kimizuka N 2018 Chem. Eur. J. 24 1806 [38] Li Q, Zaczek A J, Korter T M, Zeitler J A and Ruggiero M T 2018 Chem. Commun. 54 5776 [39] Pattengale B, Neu J, Tada A, Hu G, Karpovich C J and Brudvig G W 2021 Polyhedron 203 115182 [40] Pattengale B, Neu J, Ostresh S, Hu G, Spies J A, Okabe R, Brudvig G W and Schmuttenmaer C A 2019 J. Am. Chem. Soc. 141 9793 [41] Nyakuchena J, Ostresh S, Streater D, Pattengale B, Neu J, Fiankor C, Hu W, Kinigstein E D, Zhang J, Zhang X, Schmuttenmaer C A and Huang J 2020 J. Am. Chem. Soc. 142 21050 [42] Yan Z H, Ma B, Li S R, Liu J, Chen R, Du M H, Jin S, Zhuang G L, Long L S, Kong X J and Zheng L S 2019 Sci. Bull. 64 976 [43] Chen X, Peng C, Dan W, Yu L, Wu Y and Fei H 2022 Nat. Commun. 13 4592 [44] Wang Y, Zhang W, Li D, Guo J, Yu Y, Ding K, Duan W, Li X, Liu H, Su P, Liu B and Li J 2021 Adv. Sci. 8 2004456 [45] Sasitharan K, Bossanyi D G, Vaenas N, Parnell A J, Clark J, Iraqi A, Lidzey D G and Foster J A 2020 J. Mater. Chem. A 8 6067 [46] Yu J, Han Y, Wang L, Liu Y, Zhang H, Chen X, Liu X, Wang Z and Hu J 2023 Ultrafast Sci. 3 0030 [47] Gu C, Zhang H, You P, Zhang Q, Luo G, Shen Q, Wang Z and Hu J 2019 Nano Lett. 19 9095 [48] Sun Z, Khurshid A, Sohail M, Qiu W, Cao D and Su S J 2021 Nanomaterials 11 2761 [49] Wang M, Liu J, Guo C, Gao X, Gong C, Wang Y, Liu B, Li X, Gurzadyan G G and Sun L 2018 J. Mater. Chem. A 6 4768 [50] Zeng L, Wang Z, Wang Y, Wang J, Guo Y, Hu H, He X, Wang C and Lin W 2020 J. Am. Chem. Soc. 142 75 [51] Liu Y, Liu C H, Debnath T, Wang Y, Pohl D, Besteiro L V, Meira D M, Huang S, Yang F, Rellinghaus B, Chaker M, Perepichka D F and Ma D 2023 Nat. Commun. 14 541 [52] Santaclara J G, Kapteijn F, Gascon J and van der Veen M A 2017 CrystEngComm 19 4118 [53] Ma X, Wang L, Zhang Q and Jiang H 2019 Angew. Chem. Int. Ed. 58 12175 [54] Wang L, Zhang Z, Han Q, Liu Y, Zhong J, Chen J, Huang J, She H and Wang Q 2022 Appl. Surf. Sci. 584 152645 [55] Li R, Chen T, Lu J, Hu H, Zheng H, Zhu P and Pan X 2023 Water Res. 229 119366 [56] An Y, Liu Y, Bian H, Wang Z, Wang P, Zheng Z, Dai Y, Whangbo M H and Huang B 2019 Sci. Bull. 64 1502 [57] Zhang Y, Hu W, Wang D, Reinhart B J and Huang J 2021 J. Mater. Chem. A 9 6180 [58] Li W Q, Wang Y X, Li Y M, He C S, Lai B, Chen F, Wang H J, Zhou X G and Mu Y 2021 J. Clean. Prod. 318 128513 [59] Flanders N C, Kirschner M S, Kim P, Fauvell T J, Evans A M, Helweh W, Spencer A P, Schaller R D, Dichtel W R and Chen L X 2020 J. Am. Chem. Soc. 142 14957 [60] Gu C, Zhang H, Yu J, Shen Q, Luo G, Chen X, Xue P, Wang Z and Hu J 2021 Nano Lett. 21 1102 [61] Liang C, Cheng L, Zhang S, Yang S, Liu W, Xie J, Li M D, Chai Z, Wang Y and Wang S 2022 J. Am. Chem. Soc. 144 2189 [62] Ye Y, Huang C, Yang J, Li Y, Zhuang Q and Gu J 2019 Microporous Mesoporous Mater. 284 36 [63] Zhang Y, Yuan S, Day G, Wang X, Yang X and Zhou H C 2018 Coord. Chem. Rev. 354 28 [64] Zhou Z, Li X, Tang Y, Zhang C C, Fu H, Wu N, Ma L, Gao J and Wang Q 2018 Chem. Eng. J. 351 364 [65] Gao X, Sun G, Wang X, Lin X, Wang S and Liu Y 2021 Sens. Actuators B:Chem. 331 129448 [66] Monguzzi A, Ballabio M, Yanai N, Kimizuka N, Fazzi D, Campione M and Meinardi F 2018 Nano Lett. 18 528 [67] Rajasree S S, Yu J, Fajardo-Rojas F, Fry H C, Anderson R, Li X, Xu W, Duan J, Goswami S, Maindan K, Gómez-Gualdrón D A and Deria P 2023 J. Am. Chem. Soc. 145 17678 [68] Meinardi F, Ballabio M, Yanai N, Kimizuka N, Bianchi A, Mauri M, Simonutti R, Ronchi A, Campione M and Monguzzi A 2019 Nano Lett. 19 2169 [69] Ha D G, Wan R, Kim C A, Lin T A, Yang L, Van Voorhis T, Baldo M A and Dincǎ M 2022 Nat. Mater. 21 1275 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|