Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054210    DOI: 10.1088/1674-1056/acc05e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si

Feifei Qin(秦飞飞)1, Yang Sun(孙阳)1, Ying Yang(杨颖)1, Xin Li(李欣)1,2, Xu Wang(王旭)3, Junfeng Lu(卢俊峰)4, Yongjin Wang(王永进)1, and Gangyi Zhu(朱刚毅)1,†
1 GaN Optoelectronic Integration International Cooperation Joint Laboratory of Jiangsu Province, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Nanjing University of Posts and Telecommunications, Ministry of Education), Nanjing 210003, China;
3 Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
4 College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract  Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a GaN-based laser with an integrated PN junction heater on Si is fabricated. The photoluminescence properties of the GaN beam cavity are controlled by temperature, and the Joule heater provides electrically driven regulation of temperature. These two features of the cavity make it possible to realize convenient tuning of the lasing properties. The multi-functional GaN beam cavity achieves optically pumped lasing with a single mode near 362.4 nm with a high Q-factor of 1394. The temperature of this device increases by 0-5 ℃ under the Joule heating effect. Then, electrical control of the lasing mode is demonstrated. The lasing resonant peak shows a continuous redshift of about 0.5 nm and the device also exhibits dynamic switching of its lasing mode. The lasing modulation can be ascribed to temperature-induced reduction of the bandgap. Our work may be of benefit for external optical modulation in future chip-based optoelectronic devices.
Keywords:  GaN beam cavity      optically pumped lasing      dynamically tunable laser source      Joule heater  
Received:  13 December 2022      Revised:  11 February 2023      Accepted manuscript online:  02 March 2023
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  28.52.Fa (Materials)  
  42.55.-f (Lasers)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210593), the Foundation of Jiangsu Provincial Double Innovation Doctor Program (Grant No. 30644), the National Natural Science Foundation of China (Grant No. 62204127), State Key Laboratory of Luminescence and Applications (Grant No. SKLA 202104), open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications, Ministry of Education).
Corresponding Authors:  Gangyi Zhu     E-mail:  zhugangyi@njupt.edu.cn

Cite this article: 

Feifei Qin(秦飞飞), Yang Sun(孙阳), Ying Yang(杨颖), Xin Li(李欣), Xu Wang(王旭), Junfeng Lu(卢俊峰), Yongjin Wang(王永进), and Gangyi Zhu(朱刚毅) Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si 2023 Chin. Phys. B 32 054210

[1] Zhang Y, Zhang X, Li K H, Cheung Y F, Feng C and Choi H W 2015 Phys. Status. Solodi A 212 960
[2] Chang S, Rex N B, Chang R K, Chong G and Guido L J 1999 Appl. Phys. Lett. 75 3719
[3] Feng M, Liu J, Sun Q and Yang H 2021 Prog. Quant. Electron. 77 100323
[4] Liu J, Wang J, Sun X, Sun Q, Feng M, Zhou R, Zhou Y, Gao H, Liu T, Huang Z and Yang H 2019 ACS Photonics 6 2104
[5] Zhang X, Cheung Y F, Zhang Y and Choi H W 2014 Opt. Lett. 39 5614
[6] Ghosh P, Yu D, Hu T, Liang J, Chen Z, Yingkai L and Huang M 2019 J. Mater. Sci. 54 8472
[7] Feng M, Wang J, Zhou R, Sun Q, Gao H, Zhou Y, Liu J, Huang Y, Zhang S, Ikeda M, Wang H, Zhang Y, Wang Y and Yang H 2018 IEEE J. Sel. Top. Quant. 24 1
[8] Xing Z Q, Zhou Y J, Liu Y H and Wang F 2020 Chin. Phys. Lett. 37 027302
[9] Zhang Y, Ma Z, Zhang X, Wang T and Choi H 2014 Appl. Phys. Lett. 104 221106
[10] To C H, Fu W Y, Li K H, Cheung Y F and Choi H W 2020 Opt. Lett. 45 791
[11] Yang Y, Wei T, Zhu R, Zong H, Lu J, Li J, Liao H, Yu G, Pan C and Hu X 2018 Opt. Express 26 30021
[12] Zhang S, Li Y, Hu P, Tian Z, Li Q, Li A, Zhang Y and Yun F 2021 Photonics Res. 9 432
[13] Zhang S, Li Y, Hu P, Li A, Zhang Y, Du W, Du M, Li Q and Yun F 2020 Opt. Express 28 6443
[14] Zhang Y G, Tian Z B, Zhang X Y, Zhang X J, Gu Y, Li A Z, Zhu X R, Zheng Y L and Liui S 2007 Chin. Phys. Lett. 24 2839
[15] Tabataba-Vakili F, Alloing B, Damilano B, Souissi H, Brimont C, Doyennette L, Guillet T, Checoury X, El Kurdi M, Chenot S, Frayssinet E, Duboz J Y, Semond F, Gayral B and Boucaud P 2020 Opt. Lett. 45 4276
[16] Xu Z, Tong J, Shi X, Deng J and Zhai T 2020 Polymers 12 656
[17] Li M, Gan J, Zhang Z, Lin W, Zhao Q, Xu S and Yang Z 2018 Opt. Commun. 420 1
[18] Zhou D B, Liang S, Han L S, Zhao L J and Wang W 2017 Chin. Phys. Lett. 34 034204
[19] Xu H, Wright J B, Luk T S, Figiel J J, Cross K, Lester L F, Balakrishnan G, Wang G T, Brener I and Li Q 2012 Appl. Phys. Lett. 101 113106
[20] Liu C W, Zhang J C, Yan F L, Jia Z W, Zhao Z B, Zhuo N and Wang Z G 2017 Chin. Phys. Lett. 34 034209
[21] Yang K, Yang Y D, Xiao J L and Huang Y Z 2022 Chin. Phys. B 31 094205
[22] Li Y, Feng L, Li F, Hu P, Du M, Su X, Sun D, Tang H, Li Q and Yun F 2018 ACS Photonics 5 4259
[23] Lueng C M, Chan H L W, Surya C, Fong W K, Choy C L, Chow P and Rosamond M 1999 J. Non-Cryst. Solids 254 123
[24] Long X C, Myers R, Brueck S, Ramer R, Zheng K and Hersee S 1995 Appl. Phys. Lett. 67 1349
[25] Watanabe N, Kimoto T and Suda J 2012 Jpn. J. Appl. Phys. 51 112101
[26] Peng Y, Lu J, Peng D, Ma W, Li F, Chen Q and Pan C 2019 Adv. Funct. Mater. 29 1905051
[27] Thubthimthong B, Sasaki T and Hane K 2018 Appl. Phys. Lett. 112 071102
[28] Qin F, Zhu G, Wang R, Wang X, Lu J, Yang Y and Qiu G 2021 J. Phys. D Appl. Phys. 54 255103
[29] Zhu G, Tian M, Almokhtar M, Qin F, Li B, Zhou M and Wang Y 2022 Chin. Phys. Lett. 39 123401
[30] Wang J, Feng M, Zhou R, Sun Q, Liu J, Sun X, Zheng X, Sheng X and Yang H 2020 Appl. Phys. Express 13 074002
[31] Yang X, Shan Z, Luo Z, Hu X, Liu H, Liu Q, Zhang Y, Zhang X, Shoaib M, Qu J, Yi X, Wang X, Zhu X, Liu Y, Liao L, Wang X, Chen S and Pan A 2020 ACS Nano 14 3397
[32] Wang J, Feng M, Zhou R, Sun Q, Liu J, Sun X, Zheng X, Sheng X and Yang H 2020 Appl. Phys. Express 13 074002
[33] Zhang Y, Huang J A, Li K H, Bai D, Wang Y, Wang T and Choi H 2016 J. Phys. D Appl. Phys. 49 375103
[34] Ra Y H and Lee C R 2020 Nano Lett. 20 4162
[35] Yan F, Jiang Y, Sun X, Wei J, Chen L and Zhang Y 2019 Nano Res. 13 52
[36] Mei Y, Xu R B, Xu H, Ying L Y, Zheng Z W, Zhang B P, Li M and Zhang J 2017 Semicond. Sci. Tech. 33 015016
[37] Qin F, Zhu Q, Zhang Y, Wang R, Wang X, Zhou M and Yang Y 2021 Opt. Mater. 122 111663
[38] Efremov A, Bochkareva N, Gorbunov R, Lavrinovich D, Rebane Y T, Tarkhin D and Shreter Y G 2006 Semiconductors 40 605
[39] Choi I, Lee K, Lee C R, Lee J S, Kim S M, Jeong K U and Kim J S 2019 Acs Appl. Mater. Interf. 11 18876
[40] Leroux M, Grandjean N, Beaumont B, Nataf G, Semond F, Massies J and Gibart P 1999 J. Appl. Phys. 86 3721
[41] Fujiwara H, Niyuki R and Sasaki K 2018 J. Phy. Commun. 2 035022
[42] Wang Q, Yan Y, Qin F, Xu C, Liu X, Tan P, Shi N, Hu S, Li L, Zeng Y, Zhao Y and Jiang Y 2017 NPG Asia Mater. 9 e442
[1] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[2] Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y2Co17@SiO2 rare earth soft magnetic composites
Liang Qiao(乔亮), Cheng-Fa Tu(涂成发), Wei Wu(吴伟), Wen-Biao Wang(王文彪), Sheng-Yu Yang(杨晟宇), Sun Zhe(孙哲), Peng Wu(吴鹏), Jin-Bo Yang(杨金波), Chang-Sheng Wang(王常生), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(5): 054202.
[3] Lightweight broadband microwave absorbing metamaterial with CB-ABS composites fabricated by 3D printing
Meng-Zhou Chen(陈孟州), Liu-Ying Wang(汪刘应), Gu Liu(刘顾), Chao-Qun Ge(葛超群), Di-Chen Li(李涤尘), and Qing-Xuan Liang(梁庆宣). Chin. Phys. B, 2023, 32(4): 048103.
[4] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[5] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[6] Local density of optical states calculated by the mode spectrum in stratified media
Ting Fu(傅廷), Jingxuan Chen(陈静瑄), Xueyou Wang(王学友), Yingqiu Dai(戴迎秋), Xuyan Zhou(周旭彦), Yufei Wang(王宇飞), Mingjin Wang(王明金), and Wanhua Zheng(郑婉华). Chin. Phys. B, 2023, 32(4): 040204.
[7] Propagation and focusing characteristics of the Bessel-Gaussian beam with the spiral phase term of new power-exponent-phase
Aotian Wang(王傲天), Lianghong Yu(於亮红), Jinfeng Li(李进峰), and Xiaoyan Liang(梁晓燕). Chin. Phys. B, 2023, 32(4): 044201.
[8] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[9] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[10] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[13] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
[14] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[15] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
No Suggested Reading articles found!